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Readings and References

e Reading
— Operating System Concepts, Silberschatz, Galvin,
and Gagne

e Ch. 1 Introduction & Ch. 2 OS Structures for
background

 Most useful for us: Sec. 1.1, 1.4-1.9, 2.1, 2.3-
2.4, 2.6-2.7

— Slide credits: largely taken from CSE451, courtesy
of Hank Levy.



What Is an Operating System?

* An operating system (OS) is:
— a software layer to abstract away and manage details
of hardware resources

— a set of utilities to simplify application development

Applications
OS

Hardware

— “all the code you didn’t write” in order to implement
your application

« Key idea: virtualization of resources



The OS and hardware

« An OS mediates programs’ access to hardware
resources
— Computation (CPU)
— Volatile storage (memory) and persistent storage (disk, etc.)
— Network communications (TCP/IP stacks, ethernet cards, etc.)
— Input/output devices (keyboard, mouse, display, sound card, ..)

« The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
— processes (CPU, memory)
— files (disk)
— programs (sequences of instructions)
— sockets (network)



Why bother with an OS?

« Application benefits
— programming simplicity
» see high-level abstractions (files) instead of low-level
hardware details (device registers)
« abstractions are reusable across many programs
— portability (across machine configurations or architectures)
» device independence: 3Com card or Intel card?
e User benefits
— safety

* program “sees” own virtual machine, thinks it owns
computer

* OS protects programs from each other (what if one
crashes?)

« OS fairly multiplexes resources across programs
— efficiency (cost and speed)

« share one computer across many users

« concurrent execution of multiple programs



The major OS Issues

e structure: how is the OS organized?

 sharing: how are resources shared across users?

 naming: how are resources named (by users or programs)?

e security: how is integrity of the OS and its resources ensured?
e protection: how is one user/program protected from another?
 performance: how do we make it all go fast?

« reliability: what happens if something goes wrong (either with
hardware or with a program)?

« extensibility: can we add new features?

« communication: how do programs exchange information,
Including across a network?



More OS iIssues...

e concurrency: how are parallel activities (computation and 1/O)
created and controlled?

e scale and growth: what happens as demands or resources
Increase?

* persistence: how do you make data last longer than program
executions?

o distribution: how do multiple computers interact with each
other? how do we make distribution invisible?

e accounting: how do we keep track of resource usage, and
perhaps charge for it?

There are a huge number of engineering tradeoffs
In dealing with these issues!



Hardware/Software Changes with Time

e 1960s:
e 1970s:
e 1980s:
e 1990s:

mainframe computers (IBM)
minicomputers (DEC)

microprocessors and workstations (SUN)
PCs (rise of Microsoft, Intel, then Dell)

e 2000: Internet Services / Clusters (Amazon)
« 2006: General Cloud Computing (Google, Amazon)

e 2020: it’s up to you!!



OS history

e Inthe very beginning...

— OS was just a library of code that you linked into your
program; programs were loaded in their entirety into
memory, and executed

— Interfaces were literally switches and blinking lights
 And then came batch systems

— OS was stored in a portion of primary memory

— OS loaded the next job into memory from the card reader
 job gets executed
e output is printed, including a dump of memory (why?)
e repeat...

— card readers and line printers were very slow
* so CPU was idle much of the time (wastes $3$)




Spooling

« Disks were much faster than card readers and printers
« Spool (Simultaneous Peripheral Operations On-Line)

— while one job is executing, spool next job from card
reader onto disk

 slow card reader I/O is overlapped with CPU
— can even spool multiple programs onto disk

e OS must choose which to run next

 job scheduling

— but, CPU still idle when a program interacts with a
peripheral during execution

— buffering, double-buffering
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Multiprogramming

 To increase system utilization, multiprogramming OSs
were invented

— keeps multiple runnable jobs loaded in memory at once
— overlaps I/O of a job with computing of another

« while one job waits for I/O completion, OS runs
Instructions from another job

— to benefit, need asynchronous I/O devices

* need some way to know when devices are done
— interrupts
— polling
— goal: optimize system throughput
e perhaps at the cost of response time...
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Timesharing

To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself

— optimize response time, perhaps at the cost of
throughput

Timeslicing
— divide CPU equally among the users

— If job is truly interactive (e.g. editor), then can jump
between programs and users faster than users can
generate load

— permits users to interactively view, edit, debug running
programs (why does this matter?)

MIT Multics system (mid-1960’s) was the first large
timeshared system

— nearly all OS concepts can be traced back to Multics
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Timesharing

* Inearly 1980s, a single
timeshared VAX/780 (like
the one in the Allen Center
atrium) ran computing for the i
entire CSE department.

T AT AT
(HTHIARAT

o Atypical VAX/780 was 1
MIPS (1 MHz) and had e | &
16MB of RAM and 100MB of |
disk.

 AniPhone 3GS is 600 MIPS,
has 256MB of RAM (way too
little though) and 16GB disk.
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Parallel systems

 Some applications can be written as multiple parallel threads or
processes

can speed up the execution by running multiple
threads/processes simultaneously on multiple CPUs
[Burroughs D825, 1962]

» true multiprocesssing (not just multiprogramming)

need OS and language primitives for dividing program into
multiple parallel activities

need OS primitives for fast communication among activities

» degree of speedup dictated by
communication/computation ratio

many flavors of parallel computers today
« SMPs (symmetric multi-processors, multi-core)
o SMT (simultaneous multithreading [“hyperthreading’])
« MPPs (massively parallel processors)
* NOWs (networks of workstations) [clusters]
e computational grid (SETI @home)
14



Personal computing

Primary goal was to enable new kinds of interactive
applications

Bit-mapped display [Xerox Alto,1973]
— New graphic/visual apps
— new input device (the mouse)

Move computing near the display
— why?

Window systems

— the display as a managed resource
Local area networks [Ethernet]

— why?

Effect on OS?




Embedded OS

Pervasive computing
— cheap processors embedded everywhere
— how many are on your body now? in your car?

— cell phones, PDAs, games, iPod, network
computers, ...

Typically very constrained hardware resources
— slow processors
— small amount of memory
— no disk or tiny disk
— typically only one dedicated application
— limited power

But technology changes fast
— embedded CPUs are getting faster
— storage Is growing rapidly




OS structure

 The OS sits between application programs and the
hardware
— It mediates access and abstracts away ugliness
— programs reguest services via exceptions (traps or faults)
— devices request attention via interrupts
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Major OS components

e processes
* memory

e 1/O

e sSecondary storage

 file systems

e protection

e accounting

e shells (command interpreter, or OS Ul)
e GUI

e networking
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OS structure

* It's not always clear how to stitch OS modules
together:

[Command Interpreter

el
(Infor'ma’ruon Sey% \

Er'ror' Handling File Syst\(Accoun’rmg System )

///\\ /

%\ System
Memory Seco‘ndary Stofage
Management Management;
{\/ o

Pr'ocess Managemen’r
I/O System
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OS structure

 An OS consists of all of these components, plus:
— many other components
— system programs (privileged and non-privileged)
e e.g., bootstrap code, the init program, ...
e Major issue:
— how do we organize all this?
— what are all of the code modules, and where do they
exist?
— how do they cooperate?
« Massive software engineering and design problem
— design a large, complex program that:

» performs well, is reliable, is extensible, is
pbackwards compatible, ...
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Early structure: Monolithic

« Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

user programs

0S everything

hardware




Monolithic design

e Major advantage:
— cost of module interactions is low (procedure call)

« Disadvantages:
— hard to understand
— hard to modify
— unreliable (no isolation between system modules)
— hard to maintain

 \What is the alternative?

— find a way to organize the OS in order to simplify
Its design and implementation
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Layering

« The traditional approach is layering
— implement OS as a set of layers
— each layer presents an enhanced ‘virtual machine’ to the layer above

* The first description of this approach was Dijkstra’s THE system

— Layer 5: Job Managers

» EXecute users’ programs
— Layer 4: Device Managers

» Handle devices and provide buffering
— Layer 3: Console Manager

* Implements virtual consoles
— Layer 2: Page Manager

» Implements virtual memories for each process
— Layer 1: Kernel

* Implements a virtual processor for each process
— Layer O: Hardware

 Each layer can be tested and verified independently
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Problems with layering

e Imposes hierarchical structure
— but real systems are more complex:
* file system requires VM services (buffers)
* VM would like to use files for its backing store
— strict layering isn’t flexible enough
* Poor performance
— each layer crossing has overhead associated with it
e Disjunction between model and reality

— systems modeled as layers, but not really built that
way
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Hardware Abstraction Layer

An example of layering In
modern operating systems

Goal: separates hardware-
specific routines from the

“core” OS

— Provides portability
— Improves readability

Hardware Abstraction

Layer
(device drivers,
assembly routines)
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he Sanitized Picture of OS Structure

User Apps

1

Operating System
AN

Firefox Photoshop || Acrobat || Java
Application Interface (API)

File Memory Process Network
Systems Manager Manager Support
Device Interrupt Boot &

Drivers Handlers Init

Hardware Abstraction Layer

Hardware (CPU, devices)

3]qe1Od
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Lower-level architecture and the OS

e Operating system functionality is dictated, at least in
part, by the underlying hardware architecture

— Includes instruction set (synchronization, 1/O, ...)

— also hardware components like MMU or DMA
controllers

e Architectural support can vastly simplify (or
complicate!) OS tasks

— e.g.. early PC operating systems (DOS, MacOS)
lacked support for virtual memory, in part because
at that time PCs lacked necessary hardware
support
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Architectural features affecting OS’s

 These features were built primarily to support OS’s:
— timer (clock) operation

— synchronization instructions (e.g., atomic test-and-
set)

— memory protection

— |/O control operations

— Interrupts and exceptions

— protected modes of execution (kernel vs. user)
— protected instructions

— system calls (and software interrupts)
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Protected Iinstructions

e some instructions are restricted to the OS
— known as protected or privileged instructions
e e.g., only the OS can:
— directly access I/O devices (disks, network cards)
e why?
— manipulate memory state management
e page table pointers, TLB loads, etc.
e why?
— manipulate special ‘mode bits’
e interrupt priority level, user/kernel mode bit
e why?
— halt instruction
o why?
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OS protection

 So how does the processor know if a protected instruction
should be executed?

— the architecture must support at least two modes of
operation: kernel mode and user mode

— mode Is set by status bit in a protected processor
register

e user programs execute in user mode
e OS executes in kernel mode (OS == kernel)

* Protected instructions can only be executed in the kernel
mode

— what happens if user mode executes a protected
Instruction?
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Crossing protection boundaries

e So how do user programs do something privileged?

— e.g., how can you write to a disk if you can’t do I/O
Instructions?

» User programs must call an OS procedure

— OS defines a sequence of system calls

— how does the user-mode to kernel-mode transition happen?
 There must be a system call instruction, which:

— causes an exception (generates a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke
— saves caller’s state (regs, mode bit) so they can be restored
— OS must verify caller’'s parameters (e.g., pointers)

— must be a way to return to user mode once done
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A kernel crossing illustrated

Firefox: read()

trap to kernel
mode; save
user mode app state
kernel mode 5, handler restore app
find read( ) state, return to
. user mode,
handler In
resume
| vector table

read( ) kernel routine
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System call issues

« What would happen if kernel didn’t save state?
 Why must the kernel verify arguments?

 How can you reference kernel objects as arguments
or results to/from system calls?

33



OS control flow

« after the OS has booted, all entry to the kernel happens as
the result of an event

— event immediately stops current execution
— changes mode to kernel mode, event handler is called
« Kkernel defines handlers for each event type

— specific types are defined by the architecture
e e.g.: timer event, 1/O interrupt, system call trap

— when the processor receives an event of a given type, it
o transfers control to handler within the OS
* handler saves program state (PC, regs, etc.)
 handler functionality is invoked
e handler restores program state, returns to program
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Interrupts and exceptions

e Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
e e.g., the x86 ‘Int’ instruction, MIPS ‘syscall’ instruction
e e.g., a page fault, write to a read-only page, divide by O
o an expected exception is a “trap”, unexpected is a “fault”
— Interrupts are caused by hardware devices
e e.g., device finishes I/O
e e.g., timer fires
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/O control

Issues:
— how does the kernel start an 1/0?
« special I/O instructions
 memory-mapped I/O
— how does the kernel notice an I/O has finished?
 polling
e Iinterrupts
Interrupts are basis for asynchronous 1/O
— device performs an operation asynch to CPU
— device sends an interrupt signal on bus when done

— In memory, a vector table contains list of addresses of
kernel routines to handle various interrupt types

— CPU switches to address indicated by vector specified
by interrupt signal
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Timers

« How can the OS prevent runaway user programs from
hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the
timer with a time to interrupt

* “quantum”. how big should it be set?

— when timer fires, an interrupt transfers control back to
OS

 at which point OS must decide which program to
schedule next

* very interesting policy question: we’ll dedicate a
class to it

e Should the timer be privileged?
— for reading or for writing?
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Synchronization

* Interrupts cause a wrinkle:

— may occur any time, causing code to execute that interferes
with code that was interrupted

— OS must be able to synchronize concurrent processes
e Synchronization:

— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

— one method: turn off interrupts before the sequence, execute
It, then re-enable interrupts

 architecture must support disabling interrupts
— another method: have special complex atomic instructions
» read-modify-write
e test-and-set
» load-linked store-conditional
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“Concurrent programming”

« Management of concurrency and asynchronous
events Is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming
IS a middle ground
* Arises from the architecture

e Can be sugar-coated, but cannot be totally
abstracted away

 Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which
are just sloppy programming
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Architectures are still evolving

New features are still being introduced to meet modern demands,
e.g..

— Support for virtual machine monitors

— Hardware transaction support (to simplify parallel programming)

— Support for security (encryption, trusted modes)

— Increasingly sophisticated video / graphics

— Other stuff that hasn’t been invented yet...

In current technology transistors are free — CPU makers are
looking for new ways to use transistors to make their chips more
desirable.

Intel’s big challenge: finding applications that require new
hardware support, so that you will want to upgrade to a new
computer to run them.
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