
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 13 C h W it d P fLecture 13 – Cache Writes and Performance

ReadingReading

• Computer Organization and Designp g g
– Section 5.1 Introduction
– Section 5.2 Basics of Caches
– Section 5.3 Measuring and Improving Cache

Performance

2

Cache Writing & PerformanceCache Writing & Performance

• What’s left?
– Writing to caches: keeping memory consistent & write-

allocationallocation.
– We’ll also investigate some main memory

organizations that can help increase memory system g p y y
performance.

• Later, we’ll talk about Virtual Memory, where memory is
treated like a cache of the disktreated like a cache of the disk.

3

Four important questionsFour important questions

1 When we copy a block of data from main memory1. When we copy a block of data from main memory
to the cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or
if it has to be fetched from main memory first?if it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up.
To load a new block from main RAM, we’d have to
replace one of the existing blocks in the cache...replace one of the existing blocks in the cache...
which one?

4. How can write operations be handled by the
memory system?y y

W ’ d h fi 3 N id h 4 hWe’ve answered the first 3. Now, we consider the 4th.

4

Writing to a cacheWriting to a cache

• Writing to a cache raises several additional issues.
• First, let’s assume that the address we want to write to is already

loaded in the cache. We’ll assume a simple direct-mapped cache.

Index Tag DataV Address Datag

...

110

...

1 11010 42803 42803

...

1101 0110

...

• If we write a new value to that address, we can store the new data in
the cache, and avoid an expensive main memory access.

Mem[214] 21763

Index Tag DataV Address Data

...

Mem[214] = 21763

...

110

...

1 11010 21763 42803

...

1101 0110

... 5

Inconsistent memoryInconsistent memory

• But now the cache and memory contain different, y ,
inconsistent data!

• How can we ensure that subsequent loads will return
th i ht l ?the right value?

• This is also problematic if other devices are sharing
the main memory, as in a multiprocessor system.the main memory, as in a multiprocessor system.

Index Tag DataV Address Data

...

110

...

1 11010 21763 42803

...

1101 0110

...

6

Write-through cachesWrite through caches

• A write-through cache solves the inconsistency problem by
f i ll it t d t b th th h d th iforcing all writes to update both the cache and the main
memory.

Mem[214] = 21763

Index Tag DataV Address

...

Data

...

Thi i i l t i l t d k th h d

110

...

1 11010 21763 217631101 0110

...

• This is simple to implement and keeps the cache and
memory consistent.

• Why is this not so good?

7

Write-back cachesWrite back caches
• In a write-back cache, the memory is not updated until the cache block

needs to be replaced (e.g., when loading data into a full cache set).
• For example, we might write some data to the cache at first, leaving it

inconsistent with the main memory as shown before.
– The cache block is marked “dirty” to indicate this inconsistency

Index Tag DataDirty Address Data

Mem[214] = 21763

V

...

110

...

1 11010 21763 42803

1000 1110

1101 0110

...

1225

1

• Subsequent reads to the same memory address will be serviced by the
cache, which contains the correct, updated data.p

8

Finishing the write backFinishing the write back

• We don’t need to store the new value back to main memory unless the cache
bl k t l dblock gets replaced.

• For example, on a read from Mem[142], which maps to the same cache block,
the modified cache contents will first be written to main memory.

Index Tag Data

...

110

Dirty

1 11010 21763

Address Data

21763

1000 1110

1101 0110

1225

V

1

• Only then can the cache block be replaced with data from address 142.

... ...

Index Tag Data

...
10001 1225

Address Data

21763

1000 1110

1101 0110

1225

Dirty

0

V

1110

...

10001 1225 217631101 0110

...

01

9

Write-back cache discussionWrite back cache discussion

• The advantage of write-back caches is that not all g
write operations need to access main memory, as
with write-through caches.

If i l dd i f tl itt t th it– If a single address is frequently written to, then it
doesn’t pay to keep writing that data through to
main memory.

– If several bytes within the same cache block are
modified, they will only force one memory write
operation at write back timeoperation at write-back time.

10

Write-back cache discussionWrite back cache discussion

• Each block in a write-back cache needs a dirty bit to y
indicate whether or not it must be saved to main
memory before being replaced—otherwise we might
perform unnecessary writebacks.p y

• Notice the penalty for the main memory access will
not be applied until the execution of some
subsequent instruction following the writesubsequent instruction following the write.
– In our example, the write to Mem[214] affected

only the cache.
B t th l d f M [142] lt d i t– But the load from Mem[142] resulted in two
memory accesses: one to save data to address
214, and one to load data from address 142.

11

Write missesWrite misses

• A second scenario is if we try to write to an address that is
t l d t i d i th h thi i ll d itnot already contained in the cache; this is called a write

miss.
• Let’s say we want to store 21763 into Mem[1101 0110] but

we find that address is not currently in the cachewe find that address is not currently in the cache.

Index Tag DataV Address

...

Data

...

110

...

1 00010 123456 63781101 0110

...

• When we update Mem[1101 0110], should we also load it
into the cache?

12

Write around caches (a.k.a. write-no-allocate)

• With a write around policy, the write operation goes directly to
main memory without affecting the cache

Write around caches (a.k.a. write no allocate)

main memory without affecting the cache.

Mem[214] = 21763

Index Tag DataV

...

110 1 00010 123456

Address Data

21763

...

1101 0110

• This is good when data is written but not immediately used
i i hi h th ’ i t t l d it i t th h t

... ...

again, in which case there’s no point to load it into the cache yet.

for (int i = 0; i < SIZE; i++)
a[i] = i;

13

Allocate on writeAllocate on write

• An allocate on write strategy would instead load the newly
written data into the cache.

Mem[214] = 21763

Index Tag DataV Address Data

[]

...

110

...

1 11010 21763 21763

...

1101 0110

...

• If that data is needed again soon, it will be available in the
cache.

14

Basic main memory designBasic main memory design

• There are some ways the main memory can be organized to reduce
miss penalties and help with cachingmiss penalties and help with caching.

• For some concrete examples, let’s assume the following
three steps are taken when a cache needs to load data
from the main memory.

1 It t k 1 l t d dd t th RAM

CPU

1. It takes 1 cycle to send an address to the RAM.
2. There is a 15-cycle latency for each RAM access.
3. It takes 1 cycle to return data from the RAM.

• In the setup shown here the buses from the CPU to the
Cache

In the setup shown here, the buses from the CPU to the
cache and from the cache to RAM are all one word wide.

• If the cache has one-word blocks, then filling a block
from RAM (i.e., the miss penalty) would take 17 cycles.

Main
1 + 15 + 1 = 17 clock cycles

• The cache controller has to send the desired address to
the RAM, wait and receive the data.

Main
Memory

the RAM, wait and receive the data.

15

Miss penalties for larger cache blocksMiss penalties for larger cache blocks

• If the cache has four-word blocks, then loading a single block would
need four individual main memory accesses, and a miss penalty of 68
cycles!

4 x (1 + 15 + 1) = 68 clock cycles

CPU

Cache

MainMain
Memory

16

A wider memoryA wider memory
• A simple way to decrease the

miss penalty is to widen the
CPU

p y
memory and its interface to
the cache, so we can read
multiple words from RAM in
one shot

CPU

one shot.
• If we could read four words

from the memory at once, a
four-word cache load would

1

Cache

need just 17 cycles.

1 + 15 + 1 = 17 cycles Main
Memory

• The disadvantage is the cost
of the wider buses—each
additional bit of memory width
requires another connection torequires another connection to
the cache.

17

An interleaved memoryAn interleaved memory
• Another approach is to interleave

the memory, or split it into “banks” CPUthe memory, or split it into banks
that can be accessed individually.

• The main benefit is overlapping
the latencies of accessing each
word

CPU

word.
• For example, if our main memory

has four banks, each one byte
wide, then we could load four
bytes into a cache block in just 20

Cache

bytes into a cache block in just 20
cycles.

1 + 15 + (4 x 1) = 20 cycles
Main Memory

• Our buses are still one byte wide
here, so four cycles are needed to
transfer data to the caches.

• This is cheaper than implementing

Bank 0 Bank 1 Bank 2 Bank 3

p p g
a four-byte bus, but not too much
slower.

18

Interleaved memory accessesInterleaved memory accesses

Load word 1
Clock cycles

15 cyclesLoad word 1
Load word 2
Load word 3
Load word 4

15 cycles

• Here is a diagram to show how the memory accesses can be
interleaved.
– The magenta cycles represent sending an address to a memory

bankbank.
– Each memory bank has a 15-cycle latency, and it takes another

cycle (shown in blue) to return data from the memory.
• This is the same basic idea as pipelining!

– As soon as we request data from one memory bank, we can go
ahead and request data from another bank as well.

– Each individual load takes 17 clock cycles, but four overlapped
loads require just 20 cycles.loads require just 20 cycles.

19

SummarySummary
• Writing to a cache poses a couple of interesting issues.

— Write-through and write-back policies keep the cache consistent with mainWrite-through and write-back policies keep the cache consistent with main
memory in different ways for write hits.

— Write-around and allocate-on-write are two strategies to handle write misses,
differing in whether updated data is loaded into the cache.

• Memory system performance depends upon the cache hit time miss rate and• Memory system performance depends upon the cache hit time, miss rate and
miss penalty, as well as the actual program being executed.
– We can use these numbers to find the average memory access time.
– We can also revise our CPU time formula to include stall cycles.

AMAT = Hit time + (Miss rate x Miss penalty)
Memory stall cycles = Memory accesses x miss rate x miss penalty

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

• The organization of a memory system affects its performance.
– The cache size, block size, and associativity affect the miss rate.
– We can organize the main memory to help reduce miss penalties. For

example interleaved memory supports pipelined data accessesexample, interleaved memory supports pipelined data accesses.

20

