
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 10 Pi li i IILecture 10 – Pipelining II

ReadingReading

• Computer Organization and Designp g g
– Sec. 4.5, Overview of Pipelining
– Sec. 4.6, Pipeline Datapath and Control, pp. 356-7
– Sec. 4.7, Data Hazards, pp. 363-367
– Sec. 4.8, Control Hazards, pp. 375-377, 380-384

S fSkim the hardware details, but get the basic ideas of
how pipelining and hazards affect instruction
execution. Feel free to read the details if you’re y
interested and ask questions offline.

2

Pipelining Goal: Better ThroughputPipelining Goal: Better Throughput

overlapped

increasing
number of

overlapped

number of
instructions

increasing time

sequential

increasing time

3

Can we get that much speedup?Can we get that much speedup?

• Any time you get several things going at once, you y y g g g g , y
run the risk of interactions and dependencies

• Unwinding activities after they have started can be
tl i t f fvery costly in terms of performance

– drop everything on the floor and start over

4

Pipeline HazardsPipeline Hazards

• Structural hazards
– Instructions in different stages need the same

resource, eg, memory controller, arithmetic unit
• Data hazards

– data not available to perform next operation when
neededneeded

• Control hazards
– data not available to make branch decision soon

enough

5

Structural HazardsStructural Hazards

• Example 1: two instructions need the same resourcep
– lw instruction in stage four (memory access)
– another instruction in stage one (instruction fetch)
– both of these actions require access to memory

• Solution: add more hardware to eliminate problem
– separate instruction and data memory caches or

memory unit ports
• Or stall – do things one at a timeOr stall do things one at a time

– Not a good idea, particularly on memory access

6

Structural HazardsStructural Hazards

• Another example: need to do two additions at once:p
– An add instruction in stage 3 adding two registers
– Another instruction in stage 1 needs to compute

PC+4
• Solution: throw more hardware at the problem

Multiple adders in different parts of the CPU– Multiple adders in different parts of the CPU

• We’ll assume sufficient hardware provided so we
don’t have to deal with structural hazards

7

Data HazardsData Hazards
• When an instruction depends on the results of a

previous instruction still in the pipelineprevious instruction still in the pipeline
• This is a data dependency

$s0 is

add $s0, $s1, $s2 IF ID EX MEM WB

written here

add $s4, $s3, $s0 IF ID EX MEM WB

$s0 is
read here

8

Stall for register data dependencyStall for register data dependency

• One solution: Stall the pipeline until the result is• One solution: Stall the pipeline until the result is
available
– this would create a 3-cycle pipeline bubbley p p

add s0,s1,s2 IF ID EX MEM WBadd s0,s1,s2

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WBstall

9

Better: Read & Write in Same CycleBetter: Read & Write in Same Cycle

• Write the register in the first part of the clock g p
cycle

• Read it in the second part of the clock cycle
• Real register files are built like this
• A 2-cycle stall is still required write $s0

add s0,s1,s2 IF ID EX MEM WB

write $s0

read $s0

add s4,s3,s0 IF stall ID EX MEM WB

10

Solution: ForwardingSolution: Forwarding

• The value of $s0 is known internally after cycle 3
(after the first instruction’s EX stage)

• The value of $s0 isn’t needed until cycle 4
(before the second instruction’s EX stage)

• If we forward the result there isn’t a stall

add s0,s1,s2 IF ID EX MEM WB

add s4,s3,s0 IF ID EX MEM WB

11

Another example with dependenciesAnother example with dependencies

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14 $2 $2add $14, $2, $2

sw $15, 100($2)

How would this code sequence fare in our pipelined
datapath without forwarding?

12

Data hazards in the pipeline diagram
Clock cycle

1 2 3 4 5 6 7 8 9

Data hazards in the pipeline diagram

1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WBand $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WBadd $, $, $ M M W

sw $15, 100($2) IF ID EX MEM WB

• The SUB instruction does not write to register $2 until clock cycle 5The SUB instruction does not write to register $2 until clock cycle 5.
This causes two data hazards in the pipelined datapath.
– The AND reads register $2 in cycle 3. Since SUB hasn’t modified

the register yet, this will be the old value of $2, not the new one.g y
– Similarly, the OR instruction uses register $2 in cycle 4, again

before it’s actually updated by SUB.
13

Things that are okay
Clock cycle

1 2 3 4 5 6 7 8 9

Things that are okay

1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WBand $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WBadd $, $, $ M M W

sw $15, 100($2) IF ID EX MEM WB

• The ADD instruction is okay because of the register file• The ADD instruction is okay, because of the register file
design.
– Registers are written at the beginning of a clock cycle.
– The new value will be available by the end of that cycleThe new value will be available by the end of that cycle.

• The SW is no problem at all, since it reads $2 after the SUB
finishes. 14

Dependency arrows
Clock cycle

1 2 3 4 5 6 7 8 9

Dependency arrows

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

• Arrows indicate the flow of data between instructionsArrows indicate the flow of data between instructions.
– The tails of the arrows show when register $2 is written.
– The heads of the arrows show when $2 is read.

• Any arrow that points backwards in time represents a dataAny arrow that points backwards in time represents a data
hazard in our basic pipelined processor. Here, hazards exist
between instructions 1 & 2 and 1 & 3.

15

A more detailed look at the pipelineA more detailed look at the pipeline
• We have to eliminate the hazards, so the AND and OR

instructions will use the correct value for register $2instructions will use the correct value for register $2.
– The SUB instruction produces its result in its EX stage,

during cycle 3 in the diagram below.
Th AND d OR d th l f $2 i th i EX– The AND and OR need the new value of $2 in their EX
stages, during clock cycles 4-5 here.

– We can add forwarding hardware to solve both of these
blproblems

Clock cycle
1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB
16

What about loads?What about loads?
• What if the first instruction is lw?
• This is a true data hazard: s0 isn’t known until after the

MEM stage
We can’t forward back into the past– We can t forward back into the past

• Either stall or reorder instructions

lw s0,0(s2) IF ID EX MEM WB

add s4,s3,s0 IF ID EX MEM WB

NO!

17

Stall for lw hazardStall for lw hazard

• We can stall for one cycle and then forward
– but can we avoid the stall?but can we avoid the stall?

lw s0 0(s2) IF ID EX MEM WBlw s0,0(s2)

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WBstalladd s ,s3,s0 IF ID EX MEM WBstall

18

Instruction Reorder for lw hazardInstruction Reorder for lw hazard

• If some unrelated instruction can be moved rearrangeIf some unrelated instruction can be moved, rearrange
the order to keep the pipeline busy and mask the stall
– This is called instruction scheduling and all good

compilers do it to help out the hardwarecompilers do it to help out the hardware
– Many processors do this dynamically during

execution even if the compiler doesn’t reorder

lw s0,0(s2) IF ID EX MEM WB

add s4,s3,s0

sub t4,t2,t3 IF ID EX MEM WB

IF ID EX MEM WB

sub t4,t2,t3
19

Control HazardsControl Hazards
• Branch instructions cause control hazards

b d ’t k hi h i t ti t f t hbecause we don’t know which instruction to fetch
next

we don’t know
until here

IF ID EX MEM WBbne $s0, $s1, skip

IF ID EX MEM WB

$, $, p

add $s4, $s3, $s0

...

do we fetch the
add or the sub?

skip:

sub $s4, $s3, $s0

20

One solution: StallOne solution: Stall
• Stall until we know which instruction to execute next

– We know the result at the end of the EX state (or
earlier if we compare the registers in the ID stage)
Still causes a 1 or 2 cycle stall even with forwarding– Still causes a 1 or 2 cycle stall even with forwarding

– We can’t completely avoid the stall unless we know if
the branch will be taken

IF ID EX MEM WBbne $s0, $s1, next

IF ID EX MEM WBstallsub $s4, $s3, $s0

21

Branch PredictionBranch Prediction

• Make a guess! Assume the branch will not be takeng
– Simple to implement: keep fetching sequentially

• If we guessed right, all is well!
b bbl t ll– no bubble at all

• If we guessed wrong, then we lose a little:
– need to flush the partially completed instructionsneed to flush the partially completed instructions

• i.e., an instruction that should not be executed
must not have any permanent effect
i e can’t write to memory or a register until we• i.e., can’t write to memory or a register until we
know the instruction will actually execute

– Wasted time, but would have stalled anyway

22

Branch PredictionBranch Prediction

• Static prediction does okp
– Predict backwards branches taken (e.g., loops)
– Predict other branches not taken (right ≈ 1/2 time)

• Modern processors use dynamic branch prediction
– Record history of branches
– Predict based on history

• If branch consistently taken/not taken, predict
that in the future (but don’t change your mindthat in the future (but don t change your mind
after a single misprediction)

• More elaborate dynamic schemes in modern
processors

23

SummarySummary

• Three kinds of hazards conspire to make pipelining difficult.
S l h d l f h i h h d• Structural hazards result from not having enough hardware
available to execute multiple instructions simultaneously.
– These are avoided by adding more functional units (e.g.,

more adders or memories) or by redesigning the pipeline.) y g g p p
• Data hazards can occur when instructions need to access

registers that haven’t been updated yet.
– Hazards from R-type instructions can be avoided with

forwardingforwarding.
– Loads can result in a “true” hazard, which must stall the

pipeline.
• Control hazards arise when the CPU cannot determine which

instruction to fetch next.
– We can minimize delays by doing branch tests earlier in the

pipeline.
We can also take a chance and predict the branch direction

24

– We can also take a chance and predict the branch direction,
to make the most of a bad situation.

