
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 9 Pi li i ILecture 9 – Pipelining I

ReadingReading

• Computer Organization and Designp g g
– Section 4.1, Processor Introduction (skim the

hardware details – just get an idea of what the
i)pieces are)

– Section 4.5, Overview of Pipelining

2

Our Simplified Execution ModelOur Simplified Execution Model

• We have been working with a simple model of how g p
instructions are executed:

do {do {
fetch instruction at Mem[PC];
PC = PC + 4; // advance to next instruction
execute fetched instruction;

} while (processor not halted);

• In reality, instruction execution is broken into several
steps, each of which is performed by separate
hardware components

3

Actual Execution CycleActual Execution Cycle

• The classic MIPS implementation executes each p
instruction in 5 stages (typical of many processors)

IF ID EX MEM WB

1. Instruction Fetch

IF ID EX MEM WB

2. Instruction Decode
3. Execute
4 Memory4. Memory
5. Write Back

• Each stage takes one clock cycle
4

IF and ID StagesIF and ID Stages

1. Instruction Fetch
– Get the next instruction from memory
– Increment Program Counter by 4

2. Instruction Decode
– Figure out what the instruction says to do

G f– Get values from the named registers
– Simple instruction format means we know which

registers we may need before the instruction isregisters we may need before the instruction is
fully decoded

5

EX MEM and WB stagesEX, MEM, and WB stages

3. Execute
– On a memory reference, add up base and offset
– On an arithmetic instruction, do the math

4. Memory Access
– If load or store, access memory

O– Otherwise do nothing
5. Write back

Place the results in the appropriate register– Place the results in the appropriate register

6

Example: add $s0 $s1 $s2Example: add $s0, $s1, $s2

• IF get instruction at PC from memory; increment PCg y;

op code source 1 source 2 dest shamt function

000000 10001 10010 10000 00000 100000

• ID determine what instruction is and read registers

000000 10001 10010 10000 00000 100000

– 000000 with 100000 is the add instruction
– get contents of $s1 and $s2 (example, suppose:

$s1=7 $s2=12)$s1 7, $s2 12)
• EX add 7 and 12 = 19
• MEM do nothing for this instructiong
• WB store 19 in register $s0

7

Example: lw $t2 16($s0)Example: lw $t2, 16($s0)

• IF get instruction at PC from memory; increment PCg y;
op code base reg src/dest offset or immediate value

010111 10000 01000 0000000000010000

• ID determine what 010111 is
– 010111 is lw

f $ $ (’– get contents of $s0 and $t2 (we don’t yet know
that we don’t care about $t2). Let’s assume
$s0=0x200D1C00 and $t2=77763$ $

• EX add 1610 to 0x200D1C00 = 0x200D1C10
• MEM load the word stored at 0x200D1C10
• WB store loaded value in $t2

8

Instruction execution reviewInstruction execution review
• Executing a MIPS instruction can take up to five steps.

Step Name Description

Instruction Fetch IF Read an instruction from memory.

Instruction Decode ID Read source registers and generate control signals.

Execute EX Compute an R-type result or a branch outcome.

Memory MEM Read or write the data memory.

Writeback WB Store a result in the destination register.

• However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB

sw IF ID EX MEM

lw IF ID EX MEM WB

9

A bunch of lazy functional unitsA bunch of lazy functional units

• Notice that each execution step uses a different part p p
of the hardware.

• In other words, the units are idle most of the time!
– The instruction memory is read only when an

instruction is fetched
– Registers are read only during ID and written– Registers are read only during ID, and written

during WB.
– The ALU is used only in the middle of execution.
– The data memory is idle most of the time.

• That’s a lot of hardware sitting around doing nothing.

10

Latency & Throughput

1 2 3 4 5 6 7 8 9 10

y g p

IF ID EX MEM WB

IF ID EX MEM WB

inst 1
inst 2

Latency – time it takes for an individual instruction to execute
What’s the latency for this implementation?

One instruction takes 5 clock cycles
Cycles per Instruction (CPI) = 5

Throughput – number of instructions executed per unit timeThroughput number of instructions executed per unit time
What’s the throughput of this implementation?

One instruction is completed every 5 clock cycles
A CPI 5Average CPI = 5

11

A relevant questionA relevant question

• Assuming you’ve got:
– One washer (takes 30 minutes)

– One drier (takes 40 minutes)

– One “folder” (takes 20 minutes)

• It takes 90 minutes to wash, dry, and fold 1 load of
laundry.
– How long does 4 loads take?

12

The slow wayThe slow way
6 PM 7 8 9 10 11 Midnight

30 40 20 30 40 20 30 40 20 30 40 20

Time

• If each load is done sequentially it takes 6 hoursIf each load is done sequentially it takes 6 hours

13

Laundry PipeliningLaundry Pipelining
• Start each load as soon as possible

– Overlap loads– Overlap loads
6 PM 7 8 9 10 11 Midnight

Time

30 40 40 40 40 20

• Pipelined laundry takes 3.5 hours
14

Pipelining LessonsPipelining Lessons
Pipelining doesn’t help latency
of single load it helps

6 PM 7 8 9
of single load, it helps
throughput of entire workload
Pipeline rate limited by slowest

i li t

Time

30 40 40 40 40 20
pipeline stage
Multiple tasks operating
simultaneously using different
resources
Potential speedup = Number
pipe stagesp p g
Unbalanced lengths of pipe
stages reduces speedup
Time to “fill” pipeline and timeTime to “fill” pipeline and time
to “drain” it reduces speedup

15

PipeliningPipelining

• Pipelining is a general-purpose efficiency technique
I i ifi– It is not specific to processors

• Pipelining is used in:
Assembly lines– Assembly lines

– Bucket brigades
– Fast food restaurants

• Pipelining is used in other CS disciplines:
– Networking
– Server software architecture

• Useful to increase throughput in the presence of long latency
– More on that later…

16

Pipelined Latency & Throughputp y g p

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

inst 1
inst 2

IF ID EX MEM WB

IF ID EX MEM WB

inst 3
inst 4

IF ID EX MEM WB inst 5

• What’s the latency of this implementation?
• What’s the throughput of this

implementation?

17

Pipelined AnalysisPipelined Analysis

• A pipeline with N stages could improve throughput by p p g p g p y
N times, but
– each stage must take the same amount of time
– each stage must always have work to do
– there may be some overhead to implement

Also latency for each instruction may go up• Also, latency for each instruction may go up
– Within some limits, we don’t care

18

MIPS ISA: Designed for PipeliningMIPS ISA: Designed for Pipelining

• Instructions are all one lengthg
– simplifies Instruction Fetch stage

• Regular format
– simplifies Instruction Decode

• Few memory operands, only registers
– only lw and sw instructions access memory

• Aligned memory operands
only one memory access per operand– only one memory access per operand

19

Making Pipelining WorkMaking Pipelining Work

• We’ll make our pipeline 5 stages longp p g g
– Stages are: IF, ID, EX, MEM, and WB

• We want to support executing 5 instructions
simultaneously: one in each stage.

20

Pipelining LoadsPipelining Loads
Clock cycle

1 2 3 4 5 6 7 8 9
lw $t0 4($sp) IF ID EX MEM WBlw $t0, 4($sp) IF ID EX MEM WB

lw $t1, 8($sp) IF ID EX MEM WB

lw $t2, 12($sp) IF ID EX MEM WB

6 PM 7 8 9

lw $t3, 16($sp) IF ID EX MEM WB

lw $t4, 20($sp) IF ID EX MEM WB

6 PM 7 8 9
Time

30 40 40 40 40 20

21

A pipeline diagramA pipeline diagram
Clock cycle

1 2 3 4 5 6 7 8 9
l $t0 4($) IF ID EX MEM WBlw $t0, 4($sp) IF ID EX MEM WB

sub $v0, $a0, $a1 IF ID EX MEM WB

and $t1, $t2, $t3 IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX MEM WB

add $sp, $sp, -4 IF ID EX MEM WB

• A pipeline diagram shows the execution of a series of instructions.
– The instruction sequence is shown vertically, from top to bottom.
– Clock cycles are shown horizontally, from left to right.

E h i t ti i di id d i t it t t– Each instruction is divided into its component stages.
• This clearly indicates the overlapping of instructions. For example,

there are three instructions active in the third cycle above.
– The “lw” instruction is in its Execute stage.The lw instruction is in its Execute stage.
– Simultaneously, the “sub” is in its Instruction Decode stage.
– Also, the “and” instruction is just being fetched.

22

Pipeline terminologyPipeline terminology
Clock cycle

1 2 3 4 5 6 7 8 9
l $t0 4($) IF ID EX MEM WBlw $t0, 4($sp) IF ID EX MEM WB

sub $v0, $a0, $a1 IF ID EX MEM WB

and $t1, $t2, $t3 IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX MEM WB

add $sp, $sp, -4 IF ID EX MEM WB

• The pipeline depth is the number of stages—in this case, five.
filling full emptying

• In the first four cycles here, the pipeline is filling, since there
are unused functional units.

• In cycle 5 the pipeline is full Five instructions are beingIn cycle 5, the pipeline is full. Five instructions are being
executed simultaneously, so all hardware units are in use.

• In cycles 6-9, the pipeline is emptying. 23

Pipelining PerformancePipelining Performance
Clock cycle

1 2 3 4 5 6 7 8 9
lw $t0, 4($sp) IF ID EX MEM WB

lw $t1, 8($sp) IF ID EX MEM WB

lw $t2, 12($sp) IF ID EX MEM WB

lw $t3, 16($sp) IF ID EX MEM WB

lw $t4, 20($sp) IF ID EX MEM WB
filling

• Execution time on ideal pipeline:
– time to fill the pipeline + one cycle per instruction

filling

– time to fill the pipeline + one cycle per instruction
– N instructions -> 4 cycles + N cycles or (2N + 8) ns for

2ns clock period

• How much faster is pipelining for N=1000 ? 24

Pipeline Datapath: Resource
RequirementsRequirements

Clock cycle
1 2 3 4 5 6 7 8 9

lw $t0, 4($sp) IF ID EX MEM WB

lw $t1, 8($sp) IF ID EX MEM WB

lw $t2, 12($sp) IF ID EX MEM WB

lw $t3, 16($sp) IF ID EX MEM WB

lw $t4, 20($sp) IF ID EX MEM WB

• We need to perform several operations in the same cycle.
– Increment the PC and add registers at the same time.
– Fetch one instruction while another one reads or writes

data.
• Thus a pipelined processor duplicates hardware elements that• Thus a pipelined processor duplicates hardware elements that

are needed several times in the same clock cycle.
25

Pipelining other instruction typesPipelining other instruction types

• R-type instructions only require 4 stages: IF, ID, EX, yp y q g , , ,
and WB
– We don’t need the MEM stage

• What happens if we try to pipeline loads with R-type
instructions?

Clock cycle
1 2 3 4 5 6 7 8 9

add $sp, $sp, -4 IF ID EX WB

sub $v0 $a0 $a1 IF ID EX WBsub $v0, $a0, $a1 IF ID EX WB

lw $t0, 4($sp) IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX WB

26

lw $t1, 8($sp) IF ID EX MEM WB

Important ObservationImportant Observation
• Each functional unit can only be used once per

instructioninstruction
• Each functional unit must be used at the same stage for

all instructions. See the problem if:
– Load writes to the register file during its 5th stage
– R-type writes to the register file during its 4th stage

Clock cycle
1 2 3 4 5 6 7 8 9

add $sp, $sp, -4 IF ID EX WB

sub $v0 $a0 $a1 IF ID EX WBsub $v0, $a0, $a1 IF ID EX WB

lw $t0, 4($sp) IF ID EX MEM WB

or $s0, $s1, $s2 IF ID EX WB

lw $t1, 8($sp) IF ID EX MEM WB

27

A solution: Insert NOP stagesA solution: Insert NOP stages
• Enforce uniformity

– Make all instructions take 5 cyclesMake all instructions take 5 cycles.
– Make them have the same stages, in the same order

• Some stages will do nothing for some instructions
R-type IF ID EX NOP WB

Clock cycle
1 2 3 4 5 6 7 8 9

add $sp, $sp, -4 IF ID EX NOP WB

R-type IF ID EX NOP WB

sub $v0, $a0, $a1 IF ID EX NOP WB
lw $t0, 4($sp) IF ID EX MEM WB
or $s0, $s1, $s2 IF ID EX NOP WB

• Stores and Branches have NOP stages, too…

lw $t1, 8($sp) IF ID EX MEM WB

store IF ID EX MEM NOP

branch IF ID EX NOP NOP
28

SummarySummary

• Pipelining attempts to maximize instruction throughput by p g p g p y
overlapping the execution of multiple instructions.

• Pipelining offers amazing speedup.
In the best case one instruction finishes on every– In the best case, one instruction finishes on every
cycle, and the speedup is equal to the pipeline depth.

• This is great if all of the instructions can execute
independently of each other, but…
– What happens when an instruction needs data

produced by the previous one?p y p
– What happens if an instruction stage takes a long

time?
(Memory is a lot slower than the registers!)(Memory is a lot slower than the registers!)

– Stay tuned…
29

