
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 6 & 7 P dLecture 6 & 7 – Procedures
(aka functions, subroutines, methods…)

Reading and ReferencesReading and References

• Computer Organization and Designp g g
– Section 2.8 Procedures
– Section B.5, Memory Usage
– Section B.6 Procedure Call Convention

• Study this carefully – there are some good
examples hereexamples here

2

An Example Function: FactorialAn Example Function: Factorial
fact:

li $t0 1 # f 1
int fact(int n) {

li $t0, 1 # f = 1
move $t1, $a0 # i = n

loop:
blez $t1, exit # exit if i<=0

int i, f;
f = 1;
for (i = n; i > 0; i--) {

f = f * i; mul $t0, $t0, $t1 # f *= I
addi $t1, $t1, -1 # i—
j loop

exit

f = f * i;
}
return f;

}
move $v0, $t0 # result in $v0
jr $ra # return

3

Functions in MIPSFunctions in MIPS

• We’ll talk about the 3 steps in handling function calls:p g
1. The program’s flow of control must be changed.
2. Arguments and return values are passed back

and forth.
3. Local variables can be allocated and destroyed.

And how they are handled in MIPS:• And how they are handled in MIPS:
– New instructions for calling functions.
– Conventions for sharing registers betweenConventions for sharing registers between

functions.
– Use of a stack.

4

Register CorrespondencesRegister Correspondences

$zero $0 Zero (always)
$at $1 Assembler temp
$v0-$v1 $2-3 Value (return from function)
$a0-$a3 $4-7 Argument (to function)$a0 $a3 $4 7 Argument (to function)
$t0-$t7 $8-15 Temporaries
$s0-$s7 $16-23 Saved Temporaries
$t8 $t9 $24 25 T i$t8-$t9 $24-25 Temporaries
$k0-$k1 $26-27 Kernel (OS) Registers
$gp $28 Global Pointer Saved
$sp $29 Stack Pointer Saved
$fp $30 Frame Pointer Saved
$ra $31 Return Address Saved$ra $31 Return Address Saved

5

Control flow in CControl flow in C
• Invoking a function changes the

t l fl f t i
int main()
{control flow of a program twice.

1. Calling the function
2. Returning from the function

I thi l th i f ti

{
...
t1 = fact(8);
t2 = fact(3);
t3 = t1 + t2;• In this example the main function

calls fact twice, and fact returns
twice—but to different locations in
main.

t3 = t1 + t2;
...

}

• Each time fact is called, the CPU
has to remember the appropriate
return address.

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

• Notice that main itself is also a
function! It is called by the
operating system when you run
the program

for (i = n; i > 1; i)
f = f * i;

return f;
}

6

the program.

Function control flow MIPSFunction control flow MIPS

• MIPS uses the jump-and-link instruction jal to call j p j
functions.
– The jal saves the return address (the address of

th t i t ti) i th d di t d i t $the next instruction) in the dedicated register $ra,
before jumping to the function.

j l f tjal fact

• To transfer control back to the caller, the function just
has to jump to the address that was stored in $rahas to jump to the address that was stored in $ra.

jr $ra

7

Data flow in CData flow in C

• Functions accept int main()
{arguments and produce

return values.
• The blue parts of the

{
...
t1 = fact(8);
t2 = fact(3);
t3 t1 t2• The blue parts of the

program show the
parameters and

f h f

t3 = t1 + t2;
...

}

i t f t(i t)arguments of the fact
function.

• The purple parts of the

int fact(int n)
{

int i, f = 1;
for (i = n; i > 1; i--)

f f * iThe purple parts of the
code deal with returning
and using a result.

f = f * i;
return f;

}

8

Data flow in MIPSData flow in MIPS

• MIPS uses the following conventions for function g
arguments and results.
– Up to four function arguments can be “passed” by

placing them in argument registers $a0-$a3 beforeplacing them in argument registers $a0 $a3 before
calling the function with jal.

– A function can “return” up to two values by placing them
in registers $ 0 $ 1 before ret rning ia jrin registers $v0-$v1, before returning via jr.

• These conventions are not enforced by the hardware or
assembler, but programmers agree to them so functions
written by different people can interface with each other.

• We may have time later to talk about dealing with longer
argument lists or more complex return values

9

a gu e t sts o o e co p e etu a ues

A note about typesA note about types

• Assembly language is untyped – there is no y g g yp
distinction between integers, characters, pointers or
other kinds of values
It i t t “t h k” I• It is up to you to “type check” your programs. In
particular, make sure your function arguments and
return values are used consistently

• For example, what happens if somebody passes the
address of an integer (instead of the integer itself) to
the fact function?the fact function?

10

The big problem so farThe big problem so far

• There is a big problem here!g p
– The main code uses $t1 to store the result of

fact(8).
– But $t1 is also used within the fact function!

• The subsequent call to fact(3) will overwrite the value
of fact(8) that was stored in $t1of fact(8) that was stored in $t1

11

Nested functions

A: ...
P t B’ i $ 0 $ 3

Nested functions

• A similar situation happens
h ll f ti th t # Put B’s args in $a0-$a3

jal B # $ra = A2
A2: ...

when you call a function that
then calls another function.

• Let’s say A calls B, which calls
C

B: ...
Put C’s args in $a0-$a3,
i B’ !

C.
– The arguments for the call

to C would be placed in
$ 0 $ 3 th iti # erasing B’s args!

jal C # $ra = B2
B2: ...

jr $ra # Where does
thi ???

$a0-$a3, thus overwriting
the original arguments for
B.
Si il l j l C it # this go???

C

– Similarly, jal C overwrites
the return address that was
saved in $ra by the earlier
jal B

12

C: ...
jr $ra

jal B.

Spilling registersSpilling registers

• The CPU has a limited number of registers for use by all
functions, and it’s possible that several functions will need the
same registers.

• We can keep important registers from being overwritten by a
function call, by saving them before the function executes, and
restoring them after the function completes.

• But there are two important questions.
– Who is responsible for saving registers—the caller or the

callee?
– Where exactly are the register contents saved?y g

13

Who saves the registers?Who saves the registers?

• Who is responsible for saving important registers across
f ti ll ?function calls?
– The caller knows which registers are important to it and

should be saved.
The callee knows exactly which registers it will use and– The callee knows exactly which registers it will use and
potentially overwrite.

• However, in the typical “black box” programming
approach, the caller and callee do not know anythingapproach, the caller and callee do not know anything
about each other’s implementation.
– Different functions may be written by different people

or companies.
– A function should be able to interface with any client,

and different implementations of the same function
should be substitutable.

So how can two functions cooperate and share registers• So how can two functions cooperate and share registers
when they don’t know anything about each other?

14

The caller could save the registersThe caller could save the registers…

• One possibility is for the
ll t i t t frodo: li $a0 3caller to save any important

registers that it needs before
making a function call, and to
restore them after

frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

restore them after.
• But the caller does not know

what registers are actually
written by the function so it

Save registers
$a0, $a1, $s0, $s1

jal gollumwritten by the function, so it
may save more registers
than necessary.

• In the example on the right

jal gollum

Restore registers
$a0, $a1, $s0, $s1

• In the example on the right,
frodo wants to preserve $a0,
$a1, $s0 and $s1 from
gollum, but gollum may not

add $v0, $a0, $a1
add $v1, $s0, $s1
jr $ra

15

gollum, but gollum may not
even use those registers.

or the callee could save the registers…or the callee could save the registers…

• Another possibility is if the
ll d t llcallee saves and restores

any registers it might
overwrite.
For instance a gollum

gollum:
Save registers
$a0 $a2 $s0 $s2

li $• For instance, a gollum
function that uses registers
$a0, $a2, $s0 and $s2 could
save the original values first

li $a0, 2
li $a2, 7
li $s0, 1
li $s2, 8save the original values first,

and restore them before
returning.

• But the callee does not know

...

Restore registers
$a0 $a2 $s0 $s2• But the callee does not know

what registers are important
to the caller, so again it may
save more registers than

jr $ra

16

g
necessary.

or they could work together…or they could work together
• MIPS uses conventions again to split the register spilling chores.
• The caller is responsible for saving and restoring any of theThe caller is responsible for saving and restoring any of the

following caller-saved registers that it cares about.

$t0-$t9 $a0-$a3 $v0-$v1

In other words, the callee may freely modify these registers, under
the assumption that the caller already saved them if necessary.

• The callee is responsible for saving and restoring any of theThe callee is responsible for saving and restoring any of the
following callee-saved registers that it uses. (Remember that $ra is
“used” by jal.)

$s0-$s7 $ra

Thus the caller may assume these registers are not changed by the
callee.

17

– $ra is tricky; it is saved by a callee who is also a caller.

Register spilling exampleRegister spilling example

• This convention ensures that the caller and callee together save all
f th i t t i t f d l d t i t $ 0of the important registers—frodo only needs to save registers $a0

and $a1, while gollum only has to save registers $s0 and $s2.

f d li $ 0 3 gollum:frodo: li $a0, 3
li $a1, 1
li $s0, 4
li $s1, 1

gollum:
Save registers
$s0 and $s2

li $a0, 2

Save registers
$a0 and $a1

jal gollum

li $a2, 7
li $s0, 1
li $s2, 8
...

Restore registers
$a0 and $a1

add $v0, $a0, $a1

Restore registers
$s0 and $s2

jr $ra

18

add $v1, $s0, $s1
jr $ra

How to fix factorialHow to fix factorial

• In the factorial example, main (the caller) should save p , ()
two registers.
—$t1 must be saved before the second call to fact.
—$ra will be implicitly overwritten by the jal

instructions.
• But fact (the callee) does not need to save anything• But fact (the callee) does not need to save anything.

It only writes to registers $t0, $t1 and $v0, which
should have been saved by the caller.

19

Where are the registers saved?Where are the registers saved?
• Now we know who is responsible for saving which

registers but we still need to discuss where thoseregisters, but we still need to discuss where those
registers are saved.

• It would be nice if each function call had its own private
memory areamemory area.
– This would prevent other function calls from overwriting

our saved registers—otherwise using memory is no
better than using registersbetter than using registers.

– We could use this private memory for other purposes
too, like storing local variables.

20

Function calls and stacksFunction calls and stacks
• Notice function calls and returns occur in a

t k lik d th t tl ll d A:
1

6stack-like order: the most recently called
function is the first one to return.

1 Someone calls A

A: ...

jal B

A2: ...

jr $ra
2

6

1. Someone calls A
2. A calls B
3. B calls C
4 C returns to B

j $

B: ...

5

4. C returns to B
5. B returns to A
6. A returns

jal C

B2: ...

jr $ra
3

4

• Here, for example, C must return to B
before B can return to A.

C: ...

j $

21

jr $ra

Stacks and function callsStacks and function calls
• It’s natural to use a stack for function call storage.

A block of stack space called a stack frame canA block of stack space, called a stack frame, can
be allocated for each function call.
– When a function is called, it creates a new

frame onto the stack, which will be used for
local storage.

– Before the function returns, it must pop its stack , p p
frame, to restore the stack to its original state.

• The stack frame can be used for several purposes.
C ll d ll i t b t i– Caller- and callee-save registers can be put in
the stack.

– The stack frame can also hold local variables,

22

or extra arguments and return values.

The MIPS stackThe MIPS stack
• In MIPS machines, part of main

i d f t k

0x7FFFFFFF

kmemory is reserved for a stack.
– The stack grows downward in

terms of memory addresses.

$sp

stack

terms of memory addresses.
– The address of the “top”

element of the stack is stored
(b i) i h “ k(by convention) in the “stack
pointer” register, $sp.

• MIPS does not provide “push”MIPS does not provide push
and “pop” instructions. Instead,
they must be done explicitly by
the programmer

23

the programmer.
0x00000000

Pushing elementsPushing elements
• To push elements onto the stack:

Move the stack pointer $sp down
word 1

– Move the stack pointer $sp down
to make room for the new data.

– Store the elements into the stack.
• For example to push registers $t1

word 2$sp

For example, to push registers $t1
and $t2 onto the stack:

sub $sp, $sp, 8
sw $t1, 4($sp)

Before
sw $t1, 4($sp)
sw $t2, 0($sp)

• An equivalent sequence is:
word 2

word 1

sw $t1, -4($sp)
sw $t2, -8($sp)
sub $sp, $sp, 8

Before and after diagrams of the

$t1

$t2$sp

24

• Before and after diagrams of the
stack are shown on the right.

After

Accessing and popping elementsAccessing and popping elements
• You can access any element in the

stack (not just the top one) if you know word 1(j p) y
where it is relative to $sp.

• For example, to retrieve the value of
$t1:

word 2

$t1

$t2$sp
lw $s0, 4($sp)

• You can pop, or “erase,” elements
simply by adjusting the stack pointer

$t2$sp

simply by adjusting the stack pointer
upwards.

• To pop the value of $t2, yielding the
stack shown at the bottom: word 2

word 1

addi $sp, $sp, 4

• Note that the popped data is still
t i b t d t t th

$t1

$t2

$sp

25

present in memory, but data past the
stack pointer is considered invalid.

SummarySummary

• We focused on implementing function calls in MIPS.
– We call functions using jal, passing arguments in

registers $a0-$a3.
– Functions place results in $v0-$v1 and return using jr

rara.
• Managing resources is an important part of function calls.

– To keep important data from being overwritten,
registers are saved according to conventions for caller-registers are saved according to conventions for caller-
save and callee-save registers.

– Each function call uses stack memory for saving
registers, storing local variables and passing extra g , g p g
arguments and return values.

• Assembly programmers must follow many conventions.
Nothing prevents a rogue program from overwriting
registers or stack memory used by some other function

26

registers or stack memory used by some other function.

