CSE 410
Computer Systems

Hal Perkins
Spring 2010
Lecture 4 — SPIM: A MIPS Simulator

Reading and References

* Primary reference: textbook Appendix B
— (Appendix A in older editions of the textbook)

 Also, see the resources section on the SPIM web
page for additional documentation on SPIM

— Look for Getting Started guides

— http://www.cs.wisc.edu/~larus/spim.html

— (shortcut: google “spim” — it should be the first hit)
— Download SPIM for your machine from here

SPIM simulator

 SPIM lets you write MIPS assembly language code
and run it on a PC, linux, or mac

 PCSpim should be installed on the machines in the
A&S computer lab

e You can download versions for Windows and all
varieties of *nix (including MacOS X) from the web
site

— Trade hints on the discussion list if you have
troubles building/installing it

— Known bug: won't build on OS X 10.6; binaries
built on 10.5 intel should install ok on 10.6.

Spim display

Register panel

— register names and numbers

Text segment (code) panel

— note jump and link to “main” at [0x00400014]
— your code defines the label “main”

Data and Stack segment panel

Message panel

File Simulator Window Help

=0l x|

4]

SPIM Version Version 7.2 of August 7, 2005

Copyright 1990-2004 by James R. Larus (larus@os.wisc.edu).
1211 Rights Reserved.

D03 and Windows ports by David A. Carley (dac@os.wisc.edu).
Copyright 1997 by Morgan Kaufmann Publishers, Inc.

See the file README for a full copyright notice.

Loaded: C:happs PCEpim~exceptions.s

Memory and registers clearsd and the simulator reinitialized.

SPIM Version Version 7.2 of August 7, 2005
Copyright 1990-2004 by James R. Larus (larus@os.wisc.edu].
1211 Rights Reserved.

Kl

For Help, press F1

=(a| Biz| 8| 2|
PC = 00400000 EFPC = 0000oooo Cause = 00oooooo BadVAddr= 00000000 -
Status = 3000££10 HI = 00000000 Lo = 0ooooooo
General Registers
RO (r0) = 00000OOOO RS (t0) = 0000OOOO R1e (s0) = 00000000 R24 (t8) = 00000000
R1 (at) = 00000000 RS (tl) = 000O0OOOO R17 (s1) = 00000000 R25 (t9) = 00000000
K2 (v0) = 00000000 RI10 (t2) = 00000000 R18 (s2) = 00000000 R2Ze (kO) = OOO0OOOOO
K3 (v1l) = 00000000 RI11 (t3) = 00000000 R19 (s3) = 00000000 R2Y (k1) = 00000000
R4 (a0) = 00000000 R1Z (t4) = 00000000 R20 (s4) = 00000000 R28 (gp) = 10008000
R5 (al) = 00000000 R13 (t5) = 00000000 R21 (s5) = 00000000 R29 (sp) = 7fffeffe
K6 (a2) = 00000000 R14 (te) = 00000000 R22 (s6) = 00000000 R3O0 (s8) = 000O0O0OOO
R7 (a3) = 00000000 RI1S5 (t7) = 00000000 R23 (s7) = 00000000 R31 (ra) = 0000OOOO
Kl _'l_I
[0z00400000] 0z8fa40000 1w S4, 0(529) 3 175: 1w Sal 0(Ssp) # arge -
[0z00400004] 0z27a50004 addin $5, 529, 4 3 176: addiu Sal Ssp 4 # argv
[0z00400008] OzZ4a60004 addiu S6, 55, 4 3 177 addiu S5a2 Sal 4 # envp
[0z0040000c] 0z00041080 =11 52, 54, 2 ; 178: =11 %v0 %al 2
[0z00400010] 0z00c23021 addu 56, 56, 52 ; 179: addu 5a2 a2 Svl
[0z00400014] 0z0c100009 jal 0x00400024 [main] ; 180: jal main
[0z00400018] 0z00000000 nop ; 1831: nop
[0z0040001c] 0z3402000a ori 52, $0, 10 ; 183: 11 $w0 10
[0x00400020] 0x0000000c syscall ; 184: syscall # syscall 10 (exit)
[0x00400024] 0x34020004 ori 32, 50, 4 ;90 11 S0, 4 # print_string code
[0x00400028] O0x3c041001 lui $4, 4097 [str] ; 10: la Sal,str # addr(str)
[0x0040002c] 0x0000000c syscall 5 11: syscall # print it
4] _'l_I
DATA -
[Ozl0000000]...[0x10010000] Oz00000000
[0z10010000] Ozbocbob548 Oxef57206f 0O0xlab46c72 Ox0000000O0
[0z10010010]...[0x10040000] O0z00000000
STACK
[0z7fffeffc] O0z00000000
EERMEL DATA
[0z90000000] 0z78452020 0Ox747065603 O0OxZ06=6f69 Oz636f2000
[0z90000010] 0z72727563 OxelZ06465 0x6920646e Oxz7Z6fb=6?
[0z90000020] 0z000a6465 O0x495bL2020 0x7265746e 0x74707572

PC=0x00400000 EPC=0x00000000 Cause=0x00000000

Editing SPIM programs

e You can use any (plain) text editor you like to write
the source code

— Not Microsoft Word
e Textpad, notepad++, etc., on PC’s
o |Edit also provides a MIPS assembly highlighter

e emacs can do anything including asm — but has a
pretty steep learning curve

« A few examples follow on the next slides

hello.s

This MIPS program uses a system call to print a string

.data
Str:
.ascliz "Hello World\n"
dext
main:
i $v0,4 # print_string code
la $a0,str # addr(str)
syscall # print it

jr $ra # return

Assembly language basics

 SPIM reads a program written in MIPS assembly
language, translates it to machine code
(001011001100...), then executes it

 Programs have two sections

— .data — storage for constants and variables

— .text — program code

Sections can be repeated (alternated) as often as needed
e Code must contain a label main:

— Execution begins here; SPIM “calls” main

— main should return when done (jJr $ra)

e Much, much more in the book and upcoming lectures on
function calling conventions

add.s

load two numbers from memory into registers, add them,
and store their sum
.data
one: .word 1
two: .word 2
sum: .word -1

text
main: Iw $t0,one
lw $tl,two

add $t2,$t0,%t1
SW $t2,sum
r $ra # return

addi.s

load two numbers into registers and add them.
this time the numbers are loaded directly
from the instructions, not from memory
text
main: i $t0,1
| $t1,2
add $t2,5t0,$t1
r $ra # return

10

