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ReadingReading

• Computer Organization and Designp g g
– Section 2.1, Introduction
– Section 2.2, Operations of the Computer 

Hardware
– Section 2.3, Operands of the Computer Hardware
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From Java/C to Machine LanguageFrom Java/C to Machine Language

a = b + c;High-level 
language

Compiler
language

add $16, $17, $18Assembly 
Language

Assembler
g g

(MIPS)

01010111010101101...Binary 
Machine
Language 
(MIPS) 3



The Computer (for now)The Computer (for now)

program counter

main
memory registersy

functional units
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Instructions in main memoryInstructions in main memory

• Instructions are stored in main memoryy
• The program counter (PC) register points to (contains 

the address of) the next instruction
– All MIPS instructions are 4 bytes long, and so 

instruction addresses are always multiples of 4
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Fetch/Execute CycleFetch/Execute Cycle

• What the processor does (programmer’s view):p (p g )

while (processor not halted) {
f t h i t ti t l ti i b PCfetch instruction at memory location given by PC;
PC = PC + 4;   // increment to point to next instruction
execute fetched instruction;

}

• Instructions execute sequentially unless a jump• Instructions execute sequentially unless a jump 
or branch changes the PC to cause the next 
instruction to be fetched from somewhere else
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MIPS: register-to-register three addressMIPS: register to register, three address

• MIPS is a register-to-register, or load/store, architecture.
– The destination and sources must all be registers.
– Special instructions, which we’ll see soon, are needed to 

access main memory. y
• MIPS uses three-address instructions for data manipulation.

– Each instruction contains a destination and two sources.
For example an addition instruction (a = b + c) has the form:– For example, an addition instruction (a = b + c) has the form:

operation operands

add a, b, c

destination sources
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MIPS register fileMIPS register file

• MIPS processors have 32 registers, each of which p g ,
holds a 32-bit value 
– Register addresses (numbers) are 5 bits long

• More registers might seem better, but there is a limit 
to the goodness
– It’s more expensive because of both the registers– It s more expensive, because of both the registers 

themselves as well as hardware needed to access 
individual registers

– Instruction lengths may be affected, as we’ll see in 
the future

8



MIPS register namesMIPS register names

• MIPS register names begin with a $. There are two g g $
naming conventions:

– By number:

$0 $1 $2 $31$0    $1    $2    …    $31

– By (mostly) two-character names such as:By (mostly) two character names, such as:

$a0-$a3    $s0-$s7    $t0-$t9    $sp    $rap
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MIPS register usageMIPS register usage

• Not all of the registers are equivalent:g q
– E.g., register $0 or $zero always contains the 

value 0
(go ahead, try to change it)

• Other registers have special uses, by convention:
E g register $sp is used to hold the “stack– E.g., register $sp is used to hold the stack 
pointer”

• You have to be a little careful in picking registers for p g g
your programs.
– More about this later
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Basic arithmetic and logic operationsBasic arithmetic and logic operations

• The basic integer arithmetic operations include the g p
following:

add    sub    mul div

• And here are a few logical operations:

and    or    xor

• Remember that these all require three register 
operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + $t2

mul $s1, $s1, $a0 # $s1 = $s1 x $a0
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Larger expressions

• More complex arithmetic expressions may require multiple 

Larger expressions

operations at the instruction set level

t0 = (t1 + t2) × (t3 - t4)

add $t0, $t1, $t2 # $t0 contains $t1 + $t2
sub $s0, $t3, $t4 # Temporary value $s0 = $t3-$t4
mul $t0, $t0, $s0 # $t0 contains the final product

• Temporary registers may be necessary, since each MIPS 
instructions can access only two source registers and one 
destinationdestination
— In this example, we could re-use $t3 instead of using $s0
— But be careful not to modify registers that are needed 

i l tagain later
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Immediate operandsImmediate operands

• The instructions we’ve seen so far expect register p g
operands. How do you get data into registers in the first 
place?
— Some MIPS instructions allow you to specify a signedSome MIPS instructions allow you to specify a signed 

constant, or “immediate” value, for the second source 
instead of a register. For example, here is the 
immediate add instruction addi:immediate add instruction, addi:

addi $t0, $t1, 4 # $t0 = $t1 + 4

Immediate operands can be used in conjunction with— Immediate operands can be used in conjunction with 
the $zero register to write constants into registers:

addi $t0, $0, 4 # $t0 = 4$ , $ , $
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We need more space!We need more space! 

• Registers are fast and convenient, but we have only 32 of them, 
d h i j 32 bi idand each one is just 32-bits wide

– That’s not enough to hold data structures like large arrays
– We also can’t access data that is wider than 32 bits

• We need to add some main memory to the system!
– RAM is cheaper and denser than registers, so we can add 

lots of it
B t i l i ifi tl l i t h ld– But memory is also significantly slower, so registers should 
be used whenever possible

• In the past, using registers wisely was the programmer’s job
F l C h k d “ i t ” t k l– For example, C has a keyword “register” to mark commonly-
used variables which should be kept in a register if possible

– However, modern compilers do a good job of using registers 
intelligently and minimizing RAM accessesintelligently and minimizing RAM accesses
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MIPS memoryMIPS memory

• MIPS memory is byte-addressable, which means that y y ,
each memory address references an 8-bit quantity

• The MIPS architecture supports up to 32 address bits
– That means up to 232 bytes, or 4 GB of memory.
– Not all actual MIPS machines will have this much!

The MIPS instruction set includes dedicated load and• The MIPS instruction set includes dedicated load and 
store instructions for accessing memory
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Loading and storing bytesLoading and storing bytes

• The MIPS “load byte” instruction lb transfers one byte of 
data from main memory to a register. 

lb $t0, 20($a0) # $t0 = Memory[$a0 + 20]

– Question: What happens to the other 24 bits of the 
register?

Ho can e find o t?• How can we find out?

• The “store byte” instruction sb transfers the lowest byte of• The store byte  instruction sb transfers the lowest byte of 
data from a register into main memory. 

sb $t0 20($a0) # Memory[$a0 + 20] = $t0sb $t0, 20($a0) # Memory[$a0 + 20] = $t0

16



Memory AddressingMemory Addressing

• MIPS uses indexed addressing to reference memory.g y
—The address operand specifies a signed constant 

and a register
—These values are added to generate the effective 

address – the address of the byte to be loaded or 
storedstored
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Computing with memory

• So, to compute with memory-based data, you must:

Computing with memory

, p y , y
1. Load the data from memory to the register file.
2. Do the computation, leaving the result in a 

register.
3. Store that value back to memory if needed.
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Computing with memory - exampleComputing with memory example

• Let’s say that we want to add the numbers in a byte y y
array stored are in memory. How can we do the 
following using MIPS assembly language? (A’s 
address is in $a0 result’s address is in $a1)address is in $a0, result s address is in $a1)

char A[4] = {1, 2, 3, 4};
int result;int result;
result = A[0] + A[1] + A[2] + A[3];
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Loading and storing words

• You can also load or store 32-bit quantities—a complete 
word instead of just a byte—with the lw and sw
instructions

lw $t0, 20($a0) # $t0 = Memory[$a0 + 20]lw $t0, 20($a0) # $t0  Memory[$a0 + 20]
sw $t0, 20($a0) # Memory[$a0 + 20] = $t0

• Most programming languages support several 32-bit data 
typestypes
— Integers
— Single-precision floating-point numbers
— Memory addresses, or pointers

• Unless otherwise stated, we’ll assume words are the 
basic unit of data
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Computing with memory words

• Same example, but with 4-byte ints instead of 1-byte 

Computing with memory words

p , y y
chars.  What changes? (As before, A’s address is in 
$a0, result’s address is in $a1)

int A[4] = {1, 2, 3, 4};
int result;

result = A[0] + A[1] + A[2] + A[3];
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Word Arrays in Byte Memoriesy y
Use care with memory addresses when accessing words
F i t f d b i tFor instance, assume an array of words begins at 

address 2000
– The first array element is at address 2000y
– The second word is at address 2004, not 2001

Example, if $a0 contains 2000, then
l $t0 0($ 0)lw $t0, 0($a0)

accesses the first word of the array, but
lw $t0, 8($a0)$ , ($ )

would access the third word of the array, at address 2008

M i b t dd d b t ll d f dMemory is byte addressed but usually word referenced
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Memory Alignment (reminder)Memory Alignment (reminder)

• Picture words of data stored in byte-addressable memory like this 

• The MIPS architecture requires words to be aligned in memory; 32-
bit d t t t t dd th t i di i ibl b 4bit words must start at an address that is divisible by 4. 
– 0, 4, 8 and 12 are valid word addresses 
– 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses 
– Unaligned memory accesses result in a bus error which you– Unaligned memory accesses result in a bus error, which you 

may have unfortunately seen before 
• This restriction has relatively little effect on high-level languages 

and compilers, but it makes things easier and faster for the 
processorprocessor
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Pseudo InstructionsPseudo Instructions
• MIPS assemblers support pseudo-instructions giving the illusion 

of a more expressive instruction set by translating into one orof a more expressive instruction set by translating into one or 
more simpler, “real” instructions 

• For example, li and move are pseudo-instructions:   
li $a0, 2000        # Load immediate 2000 into $a0   $ , $
move $a1, $t0           # Copy $t0 into $a1 

• They are probably clearer than their corresponding MIPS 
instructions:   

addi $a0, $0, 2000 # Initialize $a0 to 2000   
add $a1, $t0, $0   # Copy $t0 into $a1 

• We’ll see more pseudo-instructions this quarter. p q
– A complete list of instructions is given in Appendix B 
– Unless otherwise stated, you can always use pseudo-

instructions in your assignments and on examsy g
– But remember that these do not really exist in the hardware 

– they are conveniences provided by the assembler
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