
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 3 MIPS I t tiLecture 3 – MIPS Instructions

ReadingReading

• Computer Organization and Designp g g
– Section 2.1, Introduction
– Section 2.2, Operations of the Computer

Hardware
– Section 2.3, Operands of the Computer Hardware

2

From Java/C to Machine LanguageFrom Java/C to Machine Language

a = b + c;High-level
language

Compiler
language

add $16, $17, $18Assembly
Language

Assembler
g g

(MIPS)

01010111010101101...Binary
Machine
Language
(MIPS) 3

The Computer (for now)The Computer (for now)

program counter

main
memory registersy

functional units

4

Instructions in main memoryInstructions in main memory

• Instructions are stored in main memoryy
• The program counter (PC) register points to (contains

the address of) the next instruction
– All MIPS instructions are 4 bytes long, and so

instruction addresses are always multiples of 4

5

Fetch/Execute CycleFetch/Execute Cycle

• What the processor does (programmer’s view):p (p g)

while (processor not halted) {
f t h i t ti t l ti i b PCfetch instruction at memory location given by PC;
PC = PC + 4; // increment to point to next instruction
execute fetched instruction;

}

• Instructions execute sequentially unless a jump• Instructions execute sequentially unless a jump
or branch changes the PC to cause the next
instruction to be fetched from somewhere else

6

MIPS: register-to-register three addressMIPS: register to register, three address

• MIPS is a register-to-register, or load/store, architecture.
– The destination and sources must all be registers.
– Special instructions, which we’ll see soon, are needed to

access main memory. y
• MIPS uses three-address instructions for data manipulation.

– Each instruction contains a destination and two sources.
For example an addition instruction (a = b + c) has the form:– For example, an addition instruction (a = b + c) has the form:

operation operands

add a, b, c

destination sources

7

MIPS register fileMIPS register file

• MIPS processors have 32 registers, each of which p g ,
holds a 32-bit value
– Register addresses (numbers) are 5 bits long

• More registers might seem better, but there is a limit
to the goodness
– It’s more expensive because of both the registers– It s more expensive, because of both the registers

themselves as well as hardware needed to access
individual registers

– Instruction lengths may be affected, as we’ll see in
the future

8

MIPS register namesMIPS register names

• MIPS register names begin with a $. There are two g g $
naming conventions:

– By number:

$0 $1 $2 $31$0 $1 $2 … $31

– By (mostly) two-character names such as:By (mostly) two character names, such as:

$a0-$a3 $s0-$s7 $t0-$t9 $sp $rap

9

MIPS register usageMIPS register usage

• Not all of the registers are equivalent:g q
– E.g., register $0 or $zero always contains the

value 0
(go ahead, try to change it)

• Other registers have special uses, by convention:
E g register $sp is used to hold the “stack– E.g., register $sp is used to hold the stack
pointer”

• You have to be a little careful in picking registers for p g g
your programs.
– More about this later

10

Basic arithmetic and logic operationsBasic arithmetic and logic operations

• The basic integer arithmetic operations include the g p
following:

add sub mul div

• And here are a few logical operations:

and or xor

• Remember that these all require three register
operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + $t2

mul $s1, $s1, $a0 # $s1 = $s1 x $a0

11

Larger expressions

• More complex arithmetic expressions may require multiple

Larger expressions

operations at the instruction set level

t0 = (t1 + t2) × (t3 - t4)

add $t0, $t1, $t2 # $t0 contains $t1 + $t2
sub $s0, $t3, $t4 # Temporary value $s0 = $t3-$t4
mul $t0, $t0, $s0 # $t0 contains the final product

• Temporary registers may be necessary, since each MIPS
instructions can access only two source registers and one
destinationdestination
— In this example, we could re-use $t3 instead of using $s0
— But be careful not to modify registers that are needed

i l tagain later

12

Immediate operandsImmediate operands

• The instructions we’ve seen so far expect register p g
operands. How do you get data into registers in the first
place?
— Some MIPS instructions allow you to specify a signedSome MIPS instructions allow you to specify a signed

constant, or “immediate” value, for the second source
instead of a register. For example, here is the
immediate add instruction addi:immediate add instruction, addi:

addi $t0, $t1, 4 # $t0 = $t1 + 4

Immediate operands can be used in conjunction with— Immediate operands can be used in conjunction with
the $zero register to write constants into registers:

addi $t0, $0, 4 # $t0 = 4$, $, $

13

We need more space!We need more space!

• Registers are fast and convenient, but we have only 32 of them,
d h i j 32 bi idand each one is just 32-bits wide

– That’s not enough to hold data structures like large arrays
– We also can’t access data that is wider than 32 bits

• We need to add some main memory to the system!
– RAM is cheaper and denser than registers, so we can add

lots of it
B t i l i ifi tl l i t h ld– But memory is also significantly slower, so registers should
be used whenever possible

• In the past, using registers wisely was the programmer’s job
F l C h k d “ i t ” t k l– For example, C has a keyword “register” to mark commonly-
used variables which should be kept in a register if possible

– However, modern compilers do a good job of using registers
intelligently and minimizing RAM accessesintelligently and minimizing RAM accesses

14

MIPS memoryMIPS memory

• MIPS memory is byte-addressable, which means that y y ,
each memory address references an 8-bit quantity

• The MIPS architecture supports up to 32 address bits
– That means up to 232 bytes, or 4 GB of memory.
– Not all actual MIPS machines will have this much!

The MIPS instruction set includes dedicated load and• The MIPS instruction set includes dedicated load and
store instructions for accessing memory

15

Loading and storing bytesLoading and storing bytes

• The MIPS “load byte” instruction lb transfers one byte of
data from main memory to a register.

lb $t0, 20($a0) # $t0 = Memory[$a0 + 20]

– Question: What happens to the other 24 bits of the
register?

Ho can e find o t?• How can we find out?

• The “store byte” instruction sb transfers the lowest byte of• The store byte instruction sb transfers the lowest byte of
data from a register into main memory.

sb $t0 20($a0) # Memory[$a0 + 20] = $t0sb $t0, 20($a0) # Memory[$a0 + 20] = $t0

16

Memory AddressingMemory Addressing

• MIPS uses indexed addressing to reference memory.g y
—The address operand specifies a signed constant

and a register
—These values are added to generate the effective

address – the address of the byte to be loaded or
storedstored

17

Computing with memory

• So, to compute with memory-based data, you must:

Computing with memory

, p y , y
1. Load the data from memory to the register file.
2. Do the computation, leaving the result in a

register.
3. Store that value back to memory if needed.

18

Computing with memory - exampleComputing with memory example

• Let’s say that we want to add the numbers in a byte y y
array stored are in memory. How can we do the
following using MIPS assembly language? (A’s
address is in $a0 result’s address is in $a1)address is in $a0, result s address is in $a1)

char A[4] = {1, 2, 3, 4};
int result;int result;
result = A[0] + A[1] + A[2] + A[3];

19

Loading and storing words

• You can also load or store 32-bit quantities—a complete
word instead of just a byte—with the lw and sw
instructions

lw $t0, 20($a0) # $t0 = Memory[$a0 + 20]lw $t0, 20($a0) # $t0 Memory[$a0 + 20]
sw $t0, 20($a0) # Memory[$a0 + 20] = $t0

• Most programming languages support several 32-bit data
typestypes
— Integers
— Single-precision floating-point numbers
— Memory addresses, or pointers

• Unless otherwise stated, we’ll assume words are the
basic unit of data

20

Computing with memory words

• Same example, but with 4-byte ints instead of 1-byte

Computing with memory words

p , y y
chars. What changes? (As before, A’s address is in
$a0, result’s address is in $a1)

int A[4] = {1, 2, 3, 4};
int result;

result = A[0] + A[1] + A[2] + A[3];

21

Word Arrays in Byte Memoriesy y
Use care with memory addresses when accessing words
F i t f d b i tFor instance, assume an array of words begins at

address 2000
– The first array element is at address 2000y
– The second word is at address 2004, not 2001

Example, if $a0 contains 2000, then
l $t0 0($ 0)lw $t0, 0($a0)

accesses the first word of the array, but
lw $t0, 8($a0)$, ($)

would access the third word of the array, at address 2008

M i b t dd d b t ll d f dMemory is byte addressed but usually word referenced

22

Memory Alignment (reminder)Memory Alignment (reminder)

• Picture words of data stored in byte-addressable memory like this

• The MIPS architecture requires words to be aligned in memory; 32-
bit d t t t t dd th t i di i ibl b 4bit words must start at an address that is divisible by 4.
– 0, 4, 8 and 12 are valid word addresses
– 1, 2, 3, 5, 6, 7, 9, 10 and 11 are not valid word addresses
– Unaligned memory accesses result in a bus error which you– Unaligned memory accesses result in a bus error, which you

may have unfortunately seen before
• This restriction has relatively little effect on high-level languages

and compilers, but it makes things easier and faster for the
processorprocessor

23

Pseudo InstructionsPseudo Instructions
• MIPS assemblers support pseudo-instructions giving the illusion

of a more expressive instruction set by translating into one orof a more expressive instruction set by translating into one or
more simpler, “real” instructions

• For example, li and move are pseudo-instructions:
li $a0, 2000 # Load immediate 2000 into $a0 $, $
move $a1, $t0 # Copy $t0 into $a1

• They are probably clearer than their corresponding MIPS
instructions:

addi $a0, $0, 2000 # Initialize $a0 to 2000
add $a1, $t0, $0 # Copy $t0 into $a1

• We’ll see more pseudo-instructions this quarter. p q
– A complete list of instructions is given in Appendix B
– Unless otherwise stated, you can always use pseudo-

instructions in your assignments and on examsy g
– But remember that these do not really exist in the hardware

– they are conveniences provided by the assembler
24

