
CSE 410
Computer Systems

Hal Perkins
Spring 2010

L t 2 I f ti R t tiLecture 2 – Information Representation

Reading and ReferencesReading and References

• Readingg
– Computer Organization and Design, Patterson

and Hennessy
• Chapter 2, sec. 2.4, 2.9 (first page only for now)

2

Review: A Computer isReview: A Computer is …

imain
memory processorprocessor/memory bus

I/O bI/O bus

network
interface

hard
disk

video /
camera

optical
drive

serial
ports

3

interfacedisk camera drive ports

Processor & MemoryProcessor & Memory

• For now we focus on the processor & memoryp y
• Processor operation

– Fetch next instruction from memory
– Fetch instruction operands (data) from memory
– Perform operation (add, subtract, test, …)

S (f)– Store result (if any) in memory
– Repeat

• Billions of times a second• Billions of times a second
• Memory holds all instructions and data
• What is memory made of?What is memory made of?

4

BitsBits

• All memories are composed of (billions of) bitsp ()
• A bit is:

– high or low voltage
– 0 or 1
– true or false
– yes or no
– on or off

It’s all how you interpret itIt s all how you interpret it
• But to store anything complicated we use a bunch of

bits to make up a number, character, instruction, …p

5

Computer MemoryComputer Memory

• All memories are organized by grouping sets of bits g y g p g
into individual memory cells

• Each cell has an address and its contents
• Standard organization now: 1 cell = 8 bits = 1 byte
• A single byte can hold

A small integer (0 255 or 128 127)– A small integer (0-255 or -128-127)
– A single character (‘a’, ‘A’, ‘?’, ‘#’, ‘ ’, …)
– A boolean value (00000000 00000001)A boolean value (00000000, 00000001)

6

Memory OrganizationMemory Organization

• Memory is a linear array of bytes; each byte has an y y y ; y
address (or location) – not the same as its contents

• Groups of bytes can be treated as a single unitGroups of bytes can be treated as a single unit

7

Some common storage unitsSome common storage units
bitsunit

byte 8

half-word 16half word

word

d bl d

16

32

64double word 64

• Terminology varies: this is how MIPS does it; the Intel
x86 calls 16 bits a word & 32 bits a double-word

8

AlignmentAlignment

• An object in memory is “aligned” when its address is j y g
a multiple of its size

• Byte: always aligned
• Halfword: address is multiple of 2
• Word: address is multiple of 4

Double word: address is multiple of 8• Double word: address is multiple of 8
• Alignment simplifies load/store hardware

– And is required by MIPS but not x86And is required by MIPS, but not x86

9

Binary ArithmeticBinary Arithmetic

• Just as we do with decimal numbers, we can treat a ,
collection of bits as a multi-digit number in base 2

• Example: 10102 = 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

= ____________

• You try it: 11001 = ____________ ?

10

Binary Hex and DecimalBinary, Hex, and Decimal

• It’s unwieldy to work with long strings of binary digits, y g g y g ,
so we group them in chunks of 4 and treat each
chunk as a digit in base 16
H di it• Hex digits:
– 0 = 0000, 1 = 0001, 2 = 0010, 3 = 0011
– 4 = 0100 5 = 0101 6 = 0110 7 = 0111– 4 = 0100, 5 = 0101, 6 = 0110, 7 = 0111
– 8 = 1000, 9 = 1001, __ = 1010, __ = 1011
– = 1100, = 1101, = 1110, = 1111__ , __ , __ , __

• Usual notation for hex integer in C, Java, …: 0x1c4

11

Hex NumbersHex Numbers

• What is 0x2a5 in decimal?
– 0x2a5 = 2 × 162 + a × 161 + 5 × 160

= ________________________________

• What about 0xbad?• What about 0xbad?

• Be sure you realize that 0x11 ≠ 1110 ≠ 112

12

More problemsMore problems

• What is 60510 in hex?10

f ?• What is 0xbeef in binary?
– (Hint: there’s a trick)

13

Binary Hex and DecimalBinary, Hex, and Decimal

1
0

1
0
0
=
1
1
0

1
0
1
=
1
0
1
0

1
0
2
=
1
0
0
1
0

1
0
3
=
1
0
0
0
1

Binary2 Hex16 11

3

9

0

Binary2
11

1001

1010

0x3

0x9

0 A

Hex16

1 0

5

1 6

1010

1111

1 0000

0xA

0xF

0x10

1

1

3 1

2 7

5 5

1 1111

111 1111

1111 1111

0x1F

0x7F

0xFF

1

2

14

Binary Hex and DecimalBinary, Hex, and Decimal

2
0
=
1
1
0

2
1
=
2
1
0

2
2
=
4
1
0

2
3
=
8
1
0

2
4
=
1
6
1
0

2
5
=
3
2
1
0

2
6
=
6
4
1
0

2
7
=
1
2
8
1
0

2
8
=
2
5
6
1
0

Hex Decimal222222222 Hex16 Decimal10
1 1 0x3 3

1 0 0 1 0x9 9

1 0 1 0 0 A 101 0 1 0 0xA 10

1 1 1 1 0xF 15

0 0 0 0 0x10 161

1 1 1 1 0x1F 311

1 1 1 1 0x7F 127111

1 1 1 1 0xFF 2551111

15

Binary Hex and DecimalBinary, Hex, and Decimal

01
0

1
6
0
=
1
1
0

1
6
1
=
1
6
1
0

1
6
2
=
2
5
6
1
0

1
6
3
=
4
0
9
6
1
0

1
6
4
=
6
5
5
3
6

DecimalBinary 11111 Decimal10
3 3

9 9

A 10

Binary2
11

1001

1010 A 10

F 15

1 0 16

1010

1111

1 0000

1 F 31

7 F 127

F F 255

1 1111

111 1111

1111 1111

16

Unsigned binary numbersUnsigned binary numbers

• Each bit represents a power of 2p p
• For unsigned numbers in a fixed width n-bit field:

– 2n distinct values
– the minimum value is 0
– the maximum value is 2n-1, where n is the number

of bits in the fieldof bits in the field
• Fixed field widths determine many limits

– 5 bits = 32 possible values (25 = 32)5 bits 32 possible values (2 32)
– 10 bits = 1024 possible values (210 = 1024)

17

Signed NumbersSigned Numbers

• For unsigned numbers,g ,
– each bit position represents a power of 2
– range of values is 0 to 2n-1

• How can we indicate negative values?
– two states: positive or negative

f– a binary bit indicates one of two states: 0 or 1
⇒ use one bit for the sign bit

18

Where is the sign bit?Where is the sign bit?

• Could use an additional bit to indicate signg
– each value would require 33 bits
– would really foul up the hardware design

• Could use any bit in the 32-bit word
– any bit but the left-most (high order) would

complicate the hardware tremendouslycomplicate the hardware tremendously
• ∴The high order bit (left-most) is the sign bit

– remaining bits indicate the valueremaining bits indicate the value

19

Format of 32-bit signed integerFormat of 32 bit signed integer

sign bit
(1 bit)

numeric value
(31 bits)

1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• Bit 31 is the sign bit

... 031 ...

– 0 for positive numbers, 1 for negative numbers
– aka most significant bit (msb), high order bit

20

Example: 4-bit signed numbers

i bi
Hex Bin

Unsigned
Decimal

Signed
Decimal

Example: 4 bit signed numbers

1111
1110
1101
1100

15
14
13
12

sign bit
(1 bit)

numeric value

F
E
D
C

-1
-2
-3
-41100

1011
1010
1001
1000

12
11
10
9
8

numeric value
(3 bits)

C
B
A
9
8

4
-5
-6
-7
-81000

0111
0110
0101
0100

8
7
6
5
4

1 0 1 0
8
7
6
5
4

8
7
6
5
40100

0011
0010
0001
0000

4
3
2
1
0

4
3
2
1
0

4
3
2
1
0

21

0000 00 0

Two’s complement notation
• Note special arrangement of negative values

Two s complement notation

• One zero value, one extra negative value
• The representation is exactly what you get by doing a

subtractionsubtraction

BinaryDecimal

1
- 7

0001
- 0111

BinaryDecimal

-6 1010

22

Why “two’s” complement?Why two s complement?

• In an n-bit binary word, negative x is represented
by the value of 2n-x. The radix (or base) is 2.

• 4-bit example
24 = 16. What is the representation of -6?

10000
- 0110

Binary

16
- 6

Decimal

1010

10

23

Negating a numberNegating a number

• Given x, how do we represent negative x?
negative(x) = 2n-x

and x+complement(x) = 2n-1
so negative(x) = 2n-x = complement(x)+1

• The easy shortcut
– write down the value in binary
– complement all the bits

add 1– add 1

24

Example: the negation shortcutExample: the negation shortcut

decimal 6 = 0110 = +6
l t 1001complement = 1001
add 1 = 1010 = -6

decimal -6 = 1010 = -6
complement = 0101p

add 1 = 0110 = +6

25

Why 2’s complement? (Again)Why 2 s complement? (Again)

• The key advantage is that we can add two numbers y g
together without paying any attention to the sign and
we get the properly signed result

26

What About Non-Numeric Data?What About Non Numeric Data?

• Everything is bitsy g
• So assign (arbitrarily) specific bit patterns (numbers)

to represent different characters
• Two most common codes

– ASCII – original 7-bit code, early 1960’s
How many possible characters?• How many possible characters?

– Unicode – 16- to 32-bit code to represent enough
different characters to encode all currently used y
alphabets; started in the late 1980s

27

ASCIIASCII

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 59 75 K 91 [107 k 123 {43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 111 o 127 del47 / 63 ? 79 O 95 _ 111 o 127 del

28

But wait there’s more!But wait, there s more!

• We still haven’t looked at
– Floating-point numbers (scientific notation)
– Strings/arrays
– Records/structs/objects
– Colors and images

S– Sounds
• We’ll see some of this, but it’s all encoded as

numbers (i e collections of bits)numbers (i.e., collections of bits)
• But next we need to look at how the computer

processes these things – instructions

29

