CSE 410

Computer Systems

Hal Perkins
Spring 2010
Lecture 2 - Information Representation

Reading and References

- Reading
- Computer Organization and Design, Patterson and Hennessy
- Chapter 2, sec. 2.4, 2.9 (first page only for now)

Review: A Computer is ...

Processor \& Memory

- For now we focus on the processor \& memory
- Processor operation
- Fetch next instruction from memory
- Fetch instruction operands (data) from memory
- Perform operation (add, subtract, test, ...)
- Store result (if any) in memory
- Repeat
- Billions of times a second
- Memory holds all instructions and data
- What is memory made of?

Bits

- All memories are composed of (billions of) bits
- A bit is:
- high or low voltage
- 0 or 1
- true or false
- yes or no
- on or off

It's all how you interpret it

- But to store anything complicated we use a bunch of bits to make up a number, character, instruction, ...

Computer Memory

- All memories are organized by grouping sets of bits into individual memory cells
- Each cell has an address and its contents
- Standard organization now: 1 cell = 8 bits = 1 byte
- A single byte can hold
- A small integer (0-255 or -128-127)
- A single character ('a', ‘A’, ‘?’, ‘\#', ‘ ', ...)
- A boolean value (00000000, 00000001)

Memory Organization

- Memory is a linear array of bytes; each byte has an address (or location) - not the same as its contents

- Groups of bytes can be treated as a single unit

Some common storage units

- Terminology varies: this is how MIPS does it; the Intel x86 calls 16 bits a word \& 32 bits a double-word

Alignment

- An object in memory is "aligned" when its address is a multiple of its size
- Byte: always aligned
- Halfword: address is multiple of 2
- Word: address is multiple of 4
- Double word: address is multiple of 8
- Alignment simplifies load/store hardware
- And is required by MIPS, but not x86

Binary Arithmetic

- Just as we do with decimal numbers, we can treat a collection of bits as a multi-digit number in base 2
- Example: $1010_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$

- You try it: 11001 = \qquad ?

Binary, Hex, and Decimal

- It's unwieldy to work with long strings of binary digits, so we group them in chunks of 4 and treat each chunk as a digit in base 16
- Hex digits:

$$
\begin{aligned}
& -\quad 0=0000, \quad 1=0001, \quad 2=0010, \quad 3=0011 \\
& -4=0100,5=0101,6=0110,7=0111 \\
& -8=1000,9=1001, \ldots=1010, \ldots=1011 \\
& __{\ldots}=1100, \ldots=1101, \ldots=1110, \ldots=1111
\end{aligned}
$$

- Usual notation for hex integer in C, Java, ...: 0x1c4

Hex Numbers

- What is $0 \times 2 \mathrm{a} 5$ in decimal?
$-0 \times 2 a 5=2 \times 16^{2}+a \times 16^{1}+5 \times 16^{0}$

$$
=
$$

\qquad

- What about 0xbad?
- Be sure you realize that $0 \times 11 \neq 11_{10} \neq 11_{2}$

More problems

- What is 605_{10} in hex?
- What is 0xbeef in binary?
- (Hint: there's a trick)

Binary, Hex, and Decimal

$B^{\text {Binary }} 2$	Hex_{16}		$\begin{aligned} & \stackrel{\odot}{\circ} \\ & \stackrel{\circ}{-} \\ & \stackrel{1}{N} \\ & \stackrel{+}{-} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{-} \\ & \stackrel{+}{-} \\ & \text { II } \\ & \stackrel{\rightharpoonup}{-} \end{aligned}$	$\stackrel{\ominus}{-}$ $\stackrel{11}{\circ}$ $\stackrel{+}{-}$
11	0x3				3
1001	0x9				9
1010	0xA			1	0
1111	0xF			1	5
10000	0x10			1	6
11111	0x1F			3	1
1111111	0x7F		1	2	7
11111111	0xFF		2	5	5

Binary, Hex, and Decimal

$\begin{aligned} & \stackrel{\odot}{+} \\ & \stackrel{N}{N} \\ & \underset{\sim}{1} \\ & N \end{aligned}$	$\begin{aligned} & \odot \\ & \infty^{-} \\ & \underset{~}{-1} \\ & \stackrel{1}{N} \end{aligned}$	$\stackrel{\circ}{+}$ $\stackrel{1}{\circ}$ $\stackrel{1}{N}$	$\stackrel{\stackrel{i}{1}}{\stackrel{\sim}{11}} \stackrel{\stackrel{1}{\sim}}{\sim}$	$\stackrel{\odot}{\stackrel{\ominus}{1}} \stackrel{+}{I} \stackrel{+}{N}$	$\begin{gathered} \odot \\ \stackrel{\circ}{\infty} \\ \stackrel{11}{N} \end{gathered}$	$\stackrel{\stackrel{\ominus}{i}}{\stackrel{1}{N}}$	$\begin{gathered} \stackrel{\circ}{N} \\ \stackrel{11}{N} \end{gathered}$		Hex_{16}	Decimal ${ }_{10}$
							1	1	0x3	3
					1	0	0	1	0x9	9
					1	0	1	0	0xA	10
					1	1	1	1	0xF	15
				1	0	0	0	0	0×10	16
				1	1	1	1	1	0x1F	31
		1	1	1	1	1	1	1	0x7F	127
	1	1	1	1	1	1	1	1	0xFF	255

Binary, Hex, and Decimal

$B^{\text {inary }} 2$	0° 1 1 0 11 10 0		$$	$\begin{aligned} & \odot \\ & 0 \\ & \Pi \\ & \Pi \\ & \cdots \\ & \cdots \end{aligned}$		Decimal $_{10}$
11					3	3
1001					9	9
1010					A	10
1111					F	15
10000				1	0	16
11111				1	F	31
1111111				7	F	127
11111111				F	F	255

Unsigned binary numbers

- Each bit represents a power of 2
- For unsigned numbers in a fixed width n-bit field:
-2^{n} distinct values
- the minimum value is 0
- the maximum value is 2^{n-1}, where n is the number of bits in the field
- Fixed field widths determine many limits
-5 bits $=32$ possible values $\left(2^{5}=32\right)$
-10 bits $=1024$ possible values $\left(2^{10}=1024\right)$

Signed Numbers

- For unsigned numbers,
- each bit position represents a power of 2
- range of values is 0 to $2^{n}-1$
- How can we indicate negative values?
- two states: positive or negative
- a binary bit indicates one of two states: 0 or 1
\Rightarrow use one bit for the sign bit

Where is the sign bit?

- Could use an additional bit to indicate sign
- each value would require 33 bits
- would really foul up the hardware design
- Could use any bit in the 32-bit word
- any bit but the left-most (high order) would complicate the hardware tremendously
- \therefore The high order bit (left-most) is the sign bit
- remaining bits indicate the value

Format of 32-bit signed integer

sign bit
(1 bit)

- 0 for positive numbers, 1 for negative numbers
- aka most significant bit (msb), high order bit

Example: 4-bit signed numbers

Hex	Bin	Unsigned Decimal	Signed Decimal
F	1111	15	-1
E	1110	14	-2
D	1101	13	-3
C	1100	12	-4
B	1011	11	-5
A	1010	10	-6
9	1001	9	-7
8	1000	8	-8
7	0111	7	7
6	0110	6	6
5	0101	5	5
4	0100	4	4
3	0011	3	3
2	0010	2	2
1	0001	1	1
0	0000	0	0

sign bit
(1 bit)

Two's complement notation

- Note special arrangement of negative values
- One zero value, one extra negative value
- The representation is exactly what you get by doing a subtraction

Decimal	Binary
1	0001
-7	-0111
---	---
-6	1010

Why "two's" complement?

- In an n-bit binary word, negative x is represented by the value of $2^{n}-x$. The radix (or base) is 2 .
- 4-bit example
$2^{4}=16$. What is the representation of $-6 ?$

Decimal	Binary
16	10000
$-\quad 6$	-
---	---710
10	1010

Negating a number

- Given x, how do we represent negative x ?

$$
\text { negative(x) }=2^{n-x}
$$

and $\mathrm{x}+$ complement $(\mathrm{x})=2^{\mathrm{n}}-1$
so \quad negative $(x)=2^{n}-x=$ complement($\left.x\right)+1$

- The easy shortcut
- write down the value in binary
- complement all the bits
- add 1

Example: the negation shortcut

$$
\begin{aligned}
\text { decimal } 6 & =0110=+6 \\
\text { complement } & =1001 \\
\text { add } 1 & =1010=-6 \\
\text { decimal }-6 & =1010=-6 \\
\text { complement } & =0101 \\
\text { add } 1 & =0110=+6
\end{aligned}
$$

Why 2's complement? (Again)

- The key advantage is that we can add two numbers together without paying any attention to the sign and we get the properly signed result

What About Non-Numeric Data?

- Everything is bits
- So assign (arbitrarily) specific bit patterns (numbers) to represent different characters
- Two most common codes
- ASCII - original 7-bit code, early 1960's
- How many possible characters?
- Unicode - 16- to 32-bit code to represent enough different characters to encode all currently used alphabets; started in the late 1980s

ASCII

32	space
33	$!$
34	$"$
35	$\#$
36	$\$$
37	$\%$
38	$\&$
39	$!$
40	1
41	1
42	$*$
43	+
44	1
45	-
46	$;$
47	1

48	0
49	1
50	2
51	3
52	4
53	5
54	6
55	7
56	8
57	9
58	$:$
59	$;$
60	$<$
61	$=$
62	$>$
63	$?$

	@	80	P
65	A	81	Q
66	B	82	R
67	C	83	S
68	D	84	T
69	E	85	U
70	F	86	v
71	G	87	w
72	H	88	X
73	1	89	Y
74	J	90	Z
75	K	91	[
76	L	92	1
77	M	93]
78	N	94	\wedge
79	O	95	

96		112	p
97	a	113	q
98	b	114	r
99	c	115	s
100	d	116	t
101	e	117	u
102	f	118	v
103	g	119	w
104	h	120	x
105	1	121	y
106	j	122	z
107	k	123	$\{$
108	1	124	1
109	m	125	\}
110	n	126	\sim
111	0	127	del

But wait, there's more!

- We still haven't looked at
- Floating-point numbers (scientific notation)
- Strings/arrays
- Records/structs/objects
- Colors and images
- Sounds
- We'll see some of this, but it's all encoded as numbers (i.e., collections of bits)
- But next we need to look at how the computer processes these things - instructions

