CSE 410
Computer Systems

Hal Perkins
Spring 2010
Lecture 2 — Information Representation

Reading and References

e Reading

— Computer Organization and Design, Patterson
and Hennessy

e Chapter 2, sec. 2.4, 2.9 (first page only for now)

Review: A Computer is ...

main
processor/memory bus processor
memory
1/0 bus
hard video/ ||optical serial network
disk camera ||drive ports Interface

Processor & Memory

For now we focus on the processor & memory
Processor operation
— Fetch next instruction from memory
— Fetch instruction operands (data) from memory
— Perform operation (add, subtract, test, ...)
— Store result (if any) in memory
— Repeat
e Billions of times a second
Memory holds all instructions and data
What is memory made of?

Bits

* All memories are composed of (billions of) bits
e Abitis:

— high or low voltage

—0Oorl

— true or false

— yes or no

— on or off

It’s all how you interpret it

e But to store anything complicated we use a bunch of
bits to make up a number, character, instruction, ...

Computer Memory

« All memories are organized by grouping sets of bits
Into individual memory cells

« Each cell has an address and its contents
o Standard organization now: 1 cell = 8 bits = 1 byte
* A single byte can hold

— A small integer (0-255 or -128-127)

— A single character (‘a’, ‘A’, ‘2", ‘#, "' 7, ...)

— A boolean value (00000000, 00000001)

Memory Organization

« Memory Is a linear array of bytes; each byte has an
address (or location) — not the same as its contents

Address c 1 2 3 4 5 6 7 8 9 10 11

8-bit data

Word 1 Word 2 Word 3

e Groups of bytes can be treated as a single unit

Some common storage units

unit # bits
byte 8
half-word 16
word 32

double word 64

 Terminology varies: this is how MIPS does it; the Intel
x86 calls 16 bits a word & 32 bits a double-word

Alignment

e An object in memory is “aligned” when its address Is
a multiple of its size

« Byte: always alighed

e Halfword: address is multiple of 2

e Word: address is multiple of 4

 Double word: address is multiple of 8

e Alignment simplifies load/store hardware
— And is required by MIPS, but not x86

Binary Arithmetic

e Just as we do with decimal numbers, we can treat a
collection of bits as a multi-digit number in base 2

« Example: 1010,=1x23+0x2°+1x2+0x 2

e Youtryit: 11001 = ?

10

Binary, Hex, and Decimal

e It's unwieldy to work with long strings of binary digits
So we group them in chunks of 4 and treat each
chunk as a digit in base 16

« Hex digits:

— 0=0000, 1=0001, 2=0010, 3=0011
- 4=0100, 5=0101, 6=0110, 7=0111
- 8=1000, 9=1001, =1010, =1011
- =1100, =1101, =1110, =1111

e Usual notation for hex integer in C, Java, ...: 0x1c4

11

Hex Numbers

e What is 0x2a5 in decimal?
— 0Ox2a5=2x162+ax 161 +5 x 160

« What about Oxbad?

 Be sure you realize that Ox11 = 11,, = 11,

12

More problems

 Whatis 605, In hex?

e What is Oxbeef in binary?
— (Hint: there’s a trick)

13

Binary, Hex, and Decimal

S

S g &

P I I

Binary, Hex g 131919
11 0x3 3

1001 0x9 R
1010 OxA i1 00
1111 oxF i1 5

1 0000| Ox10 i1 6

1 1111| OoxiF E 53 51
111 1111| Ox7F 1 2 07
1111 1111| OxFF 2 5 5

14

Binary, Hex, and Decimal

Decimal

10
15
16
31
127
255

HeX,g

0Ox3
Ox9

OxA
OxF
0x10
Ox1F

OxX7F
OxFF

15

Binary, Hex, and Decimal

S
© = o
B & @ 2
n o W o© =
© < N oI
1 1 I 1 11
< (90) I\ — (@)
- © © ' © O ' © -
Binary, | i< | 44 || Decimal,,
11 ' 3 3
1001 |9 9
1010 A 10
1111 F 15
1 0000 1 10 16
1 1111 1 iF 31
111 1111 7 iF 127
1111 1111 FIF 255

Unsigned binary numbers

« Each bit represents a power of 2
e For unsigned numbers in a fixed width n-bit field:
— 2" distinct values

— the minimum value is O
— the maximum value is 2"-1, where n is the number
of bits in the field

* Fixed field widths determine many limits
— 5 bits = 32 possible values (2° = 32)
— 10 bits = 1024 possible values (21° = 1024)

17

Signed Numbers

e For unsigned numbers,
— each bit position represents a power of 2
— range of values is 0 to 2"-1
 How can we indicate negative values?
— two states: positive or negative
— a binary bit indicates one of two states: 0 or 1
= use one bit for the sign bit

18

Where Is the sign bit?

e Could use an additional bit to indicate sign
— each value would require 33 bits
— would really foul up the hardware design
e Could use any bit in the 32-bit word

— any bit but the left-most (high order) would
complicate the hardware tremendously

o .. The high order bit (left-most) is the sign bit
— remaining bits indicate the value

19

Format of 32-bit signed integer

sign bit numeric value
(1 bit) (31 bits)
1010111110001 000/21000000000000000
N s s A A s A

31 ...

e Bit 31 is the sign bit
— O for positive numbers, 1 for negative numbers
— aka most significant bit (msb), high order bit

20

Example: 4-bit signed numbers

_ Unsigned | Signed
Hex BIn | Decimal | Decimal

F 1111 15 -1 sign bit

E 1110 14 _2 (1 bit)

D 1101 13 -3 _

C 1100 12 _4 numeric value
B 1011 11 5 (3 pits)

A | 1010 10 -6

9 1001 9 7 ol .

8 1000 8 _8

2 "‘d'ii'i"""'""""""""""'7_ _____ 1/01 0
||

OFRLNMNW,AMIITO N
o
=
o
o
OFRLNW,AMIITO N

21

Two’s complement notation

Note special arrangement of negative values
One zero value, one extra negative value

The representation is exactly what you get by doing a
subtraction

Decimal Binary
1 0001
- 7 - 0111

-6 1010

22

Why “two’s” complement?

* |In an n-bit binary word, negative x Is represented
by the value of 2"-x. The radix (or base) Is 2.

e 4-bit example
24 =16. What is the representation of -67?

Decimal Binary
16 10000
- 6 - 0110

10 1010

23

Negating a number

e Given x, how do we represent negative x?
negative(x) = 2"-x
and x+complement(x) = 2"-1
SO negative(x) = 2"-x = complement(x)+1

 The easy shortcut
— write down the value in binary
— complement all the bits
—add 1

24

Example: the negation shortcut

decimal 6
complement
add 1

decimal -6
complement
add 1

0110
1001
1010

1010
0101
0110

25

Why 2's complement? (Again)

e The key advantage Is that we can add two numbers
together without paying any attention to the sign and
we get the properly signed result

26

What About Non-Numeric Data?

e Everything is bits
e S0 assign (arbitrarily) specific bit patterns (numbers)
to represent different characters
 Two most common codes
— ASCII — original 7-bit code, early 1960’s
 How many possible characters?

— Unicode — 16- to 32-bit code to represent enough
different characters to encode all currently used
alphabets; started in the late 1980s

27

ASCII

pqutUVWXVJZ{I}~%
NN TODONOWOWMOOOO AdNMSS L O N~
Ad A dd ddd N NNNNANNN
AdAd AdAd A A A A d A A A AAA
fr 0 QO OT O DL — =¥ — & C O
O d AN MW O~ O
ON~NOWOODO OO0 OO0O0O0O -
OO0 A dAdAd A A A A A A A A
OO vk D> X >N — -~ mK<
O 1 AN MO ONOWODO dNMI LD
0O 00O 00 0O 00 0O G0 00 G0 O O O O O O O
<M OUOUAOAOWWLOI—m®X¥Y 120
TN ONOVDOODO A NMSTLW O~
© O O OO ONMNMNMNMNNMNNMNDNIDN~
O-d N MO OMN~OWOO® ~V Il A o
0 OO AN ML ONOOWMODO N M
T T LWL LW LWLWOLWLWLWLMW O O O O
3
C — r HTHAH NJFr ~~—~*x + =~ 1 N
o
wn
ANMTODONOODO ANMS L O N~
MO OHO OO OO T T <

28

But wait, there’s more!

 We still haven’t looked at
— Floating-point numbers (scientific notation)
— Strings/arrays
— Records/structs/objects
— Colors and images
— Sounds

e We’'ll see some of this, but it's all encoded as
numbers (i.e., collections of bits)

* But next we need to look at how the computer
processes these things — instructions

29

