
 CSE 410 Midterm Exam 5/03/10

 Sample Solution Page 1 of 7

Question 1. (14 points) This question involves 12-bit signed, 2’s complement binary
numbers.

(a) Give the 12-bit 2’s complement binary and hexadecimal representations of the
decimal number -320.

 1110 1100 0000

 0xEC0

(b) Translate the 12-bit hexadecimal number 0xF00 to binary and then give its decimal
value if we interpret it as a 2’s complement binary integer.

 1111 0000 0000

 -256

Powers of 2 and 16 for reference.

Number Hex Decimal
20 160 1
21 2
22 4
23 8
24 161 16
25 32
26 64
27 128
28 162 256
29 512
210 1024
211 2048
212 163 4096

 CSE 410 Midterm Exam 5/03/10

 Sample Solution Page 2 of 7

Question 2. (18 points) The pseudo-question. (But you have to provide a real answer)

Consider the following fragment of a MIPS assembly language program.

 bgt $t3, $a0, there

 add $t3, $t3, $a0

 move $v0, $t3

there:

 li $t0, 0x10010110

This fragment contains several assembler pseudo instructions as well as a real MIPS
machine instruction or two (or maybe more, or maybe less).

Re-write this fragment of code so it uses only MIPS machine language instructions. You
should replace each pseudo-instruction in the code with machine language instructions, as
would be done by a MIPS assembler like SPIM.

 slt $at, $a0, $t3 # $at=$t3>$a0; must use $at

 bne $at, $zero, there

 add $t3, $t3, $a0

 or $v0, $t3, $zero # add ok here instead

there:

 lui $t0, 0x1001 # could also use $at

 ori $t0, $t0, 0x0110 # add ok here instead

In grading we were flexible as long as the results were reasonable and would
produce the right results. So, for example, add instructions would work instead of
or in these particular cases. The or instruction above there: could have been an
ori. Similarly the lui could put its result in $at. What would not be ok is, for
instance, using some register other than $at for the result of the slt instructin,
since that might clobber some needed value in that other register. There would also
be problems with add instructions instead of or if the numbers had the high-order
bit set, which would lead to problems with sign-extended negative immediate values.
The answers given here are pretty much what a normal assembler would produce.

 CSE 410 Midterm Exam 5/03/10

 Sample Solution Page 3 of 7

Question 3. (14 points) Suppose we have a 32-bit MIPS word containing the value
0x000590C0. We would like to know what MIPS machine instruction this represents.

(a) Write this instruction word in binary. Leave enough spaces between the digits for
part (c) of the question.

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

 op rs rt rd shamt funct

(b) What is the format of this instruction? (circle)

 R I J

(c) In your answer to part (a), draw boxes around the bits that make up the different
fields of the instruction and then label the instruction fields (opcode, rs, etc.)

(d) Translate this instruction to assembly language. Use symbolic register names like
$t0 instead of absolute register numbers like $8.

 sll $s2, $a1, 3

 CSE 410 Midterm Exam 5/03/10

 Sample Solution Page 4 of 7

Question 4. (20 points) Suppose we have the following four instructions in a fragment
of a program.

 add $t1, $a0, $t4

 add $t5, $t4, $t2

 lw $t0, 12($t5)

 add $v0, $t0, $t1

(a) Identify all of the data dependencies in the above code. You can either write an
answer below, or circle the affected registers in the above code and draw lines to indicate
the data dependencies between instructions.

(b) Fill in the following pipeline timing diagram to show how those instructions would
execute on a machine with internal forwarding of data from one instruction to the next.
You should also assume that a register can be written with a new value at the beginning
of a cycle and the new value can be read out at the end of the same cycle. Indicate a stall
by leaving an entry blank or writing “stall” or “NOP”. The first three cycles of the first
instruction (only) are filled in for you. (You may not need all of the columns.)

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add IF ID EX MEM WB

add IF ID EX MEM WB

lw IF ID EX MEM WB

add IF ID stall EX MEM WB

(c) If there are any stall cycles in the timing diagram from part (b), is there any way to
rearrange or alter these instructions to reduce the number of stalls? If so, how would you
do it, and how many stall cycles (if any) are left in the final schedule?

Yes. Move the first add instruction so it is between the lw and final add. That will
keep the pipeline full while waiting for the MEM cycle in the lw to complete.

0 stall cycles in the final schedule.

 CSE 410 Midterm Exam 5/03/10

 Sample Solution Page 5 of 7

Question 5. (22 points) A little string programming. For this problem, implement a
MIPS assembly language procedure strcat that appends a copy of one string to the end
of another. For instance, if strings s and t are

s i c e \0 ? ? ? ? ? ? ?
t c r e a m \0 ? ? ? ? ?

then after executing strcat(s,t) the strings should look as follows.

s i c e c r e a m \0 ? ?
t c r e a m \0 ? ? ? ? ?

In the diagrams, \0 indicates a byte containing binary 0 (0x00), and ? indicates bytes
whose contents are unknown.

Your code should use the standard MIPS calling conventions. You should assume that
the first string has enough unused space at the end to hold a copy of the second string,
and that both strings are properly terminated with a \0 byte at the end. The strcat
procedure has no return value (i.e., it would be a void function in C or Java).

Please supply reasonable comments so we can follow your use of registers and memory.

(solution on next page)

(additional room on the next page for the rest of your answer if needed)

 CSE 410 Midterm Exam 5/03/10

 Sample Solution Page 6 of 7

Question 5. (cont) Additional room for the rest of your strcat procedure if needed.

append a copy of the second string argument to the first
string argument.

strcat:

Input: $a0 = address of string s (destination)
$a1 = address of string t (source)

Advance #a0 until it contains address of \0 byte

skip:
 lbu $t0, 0($a0)
 beq $t0, $zero, done
 addi $a0, $a0, 1
 j skip
done:

copy t to s until \0 byte copied

copy:
 lbu $t0, 0($a1)
 sb $t0, 0($a0)
 addi $t0, $t0, 1
 addi $t1, $t1, 1
 bne $t0, $zero, copy

return to caller

 jr $ra

Obviously there are many possible solutions and we gave credit for any that worked
properly and obeyed the standard conventions about register usage, etc. In
particular, lb would work just as well as lbu in this code, although in general lbu
would be best for loading 8-bit quantities that we do not want to treat as signed
numbers.

One error that was surprisingly common was to use lw/sw instead of lb/sb. That
would produce all sorts of trouble, including unaligned memory access errors, not to
mention storing 4 bytes at a time.

 CSE 410 Midterm Exam 5/03/10

 Sample Solution Page 7 of 7

Question 6. (12 points) When most programs are executed, their memory references
exhibit a property known as temporal locality.

(a) What does this term mean? (You can be very brief here.)

If a program references a particular location in storage, it is likely to reference the
same location again soon.

(b) Why is this property useful when we design caches and memory hierarchies?

The first reference to any memory location will be a cache miss and will require a
slow access to main memory. Because of temporal locality, there is a high likelihood
that subsequent references will occur while the value is still in the cache. The
average access time for the multiple references will then be the average of the single
main memory reference plus the (multiple) cache references, which will be
significantly faster than multiple main memory references.

