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Name ________________________________   
 
Do not write your id number or any other confidential information on this page. 
 
 
 
There are 10 questions worth a total of 100 points.  Please budget your time so you get to 
all of the questions.  Keep your answers brief and to the point. 
 
You may want to use a copy of the “green card” from the textbook.  We have additional 
copies if you did not bring one with you.  Other than that, the exam is closed book, closed 
notes, closed calculators, closed laptops, closed twitter, closed telepathy, etc. 
 
Please wait to turn the page until everyone is told to begin. 
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Score _________________ / 100 
 
 
1. ______ / 12 

2. ______ / 12 

3. ______ / 12 

4. ______ / 10 

5. ______ / 8 

6. ______ / 10 

7. ______ / 10 

8. ______ / 10 

9. ______ / 8 

10. ______ / 8 
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Question 1.  (12 points)  (caches) 
 
(a)  One choice in designing cache memories is to pick a block size.  Which of the 
following do you think would be the most reasonable size for cache blocks on a computer 
designed for general-purpose laptop or desktop applications?  Circle your answer and 
justify it. 
 
 8 bytes    64 bytes   512 bytes  2048 bytes 
 
 
 
 
 
 
 
 
 
 
 
(b)  What problem does a 2-way associative cache solve compared to a direct-mapped 
one? 
 
 
 
 
 
 
 
 
 
 
 
 
(c)  A design choice for a cache memory is whether to use a write-back or a write-
through policy.  What is the difference between these? 
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Question 2.  (12 points)  Suppose we have a memory system that has a main memory, a 
single-level cache, and paging virtual memory.  The three levels of the memory system 
have the following access times: 
 
 2 ns  cache 
 100 ns  main memory 
 10 ms  paging disk 
 
(a)  The cache has a 95% hit rate.  What is the effective memory access time if we 
consider only the cache and main memory and ignore page faults and disk access times?  
(To save time, you only need to clearly write out the formula, but do not have to simplify 
the final result.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Now recalculate the effective memory access time assuming the same cache hit rate 
(95%) plus a page fault rate of 0.001%  (i.e., 99.999% of the memory accesses succeed 
without producing a page fault).  (Again, a formula is adequate.)
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Question 3.  (12 points)  (paging)  (a)  Belady’s MIN algorithm for replacing pages in a 
virtual memory system has the provably lowest page-fault rate of all theoretical or 
practical page replacement algorithms.  What is this page replacement policy? 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)  No real systems use Belady’s MIN algorithm.  Why not? 
 
 
 
 
 
 
 
 
(c)  There are several other page replacement algorithms that could be used instead of 
MIN in a real system including FIFO, approximate LRU, and randomly picking a page 
frame to reuse after a page fault.  Which one of these is the best choice for realistic 
systems and why? 
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Question 4.  (10 points)  (threads)  Threads can be implemented as user-level threads 
using a library package that runs entirely in a process address space, or as kernel-level 
threads, where the operating system kernel is aware when a process has more than one 
thread associated with it. 
 
(a)  Give one advantage that user-level threads have compared to kernel-level threads. 
 
 
 
 
 
 
 
 
 
 
(b) Give one advantage that kernel-level threads have compared to user-level threads. 
 
 
 
 
 
 
 
 
 
 
 
Question 5.  (8 points)  Translation Lookaside Buffers (TLBs) have often been 
implemented with a fully associative lookup, while cache memories never use this.  Give 
a brief technical explanation of why a fully associative lookup scheme can make sense 
for a TLB but not for a cache.
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Question 6. (10 points)  (scheduling)  Suppose we have the following jobs to execute, 
with the given start times and total times needed for each job. 
 
 

Job Start Time Total time 
A 0 25 
B 10 60 
C 25 30 

 
 
Now suppose we execute those jobs using a Round-Robin scheduler with a time quantum 
of 20.  Fill in the chart below to show the timeline of when each job executes, starting 
with time 0 in the first row, and filling in each successive row with a time and the letter 
identifying the job that starts or resumes execution at that time.  Continue until all of the 
jobs are finished.  You may not need all the rows.  The first row is filled in for you 
 
 

Time Job 

0 A 
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Question 7. (10 points) (locks)  In lecture we discussed the implementation of low-level 
lock primitives acquire and free.  If we represent a lock as a word in memory with 
the value 1 when it is held by a thread and 0 when it is free, the free operation is easy – 
just store 0 in the lock variable.  Acquire needs to set the lock variable to 1, but it must be 
done correctly in case some other thread holds the lock or is trying to acquire it. 
 
A common instruction provided on many computers to help with this is compare-and-
swap (cas).  A typical version of this involves three registers – two containing values 
and a third containing the address of the lock.  Here is a pseudo-code description of the 
operation of cas: 
 
 cas x,y,addr ≡ 
  temp = MEM[addr]; 
  if (temp == x) { 
   MEM[addr] = y; 
  } else { 
   x = temp; 
  } 
 
(a) Complete the following assembly language implementation of the operation 
acquire that so it can be executed by a thread to acquire a lock correctly.  Register 
$a0 contains the address of the lock variable.  Fill in the blanks, including the correct 
conditional branch operand on the “b____” instruction. 
 
 # acquire the lock whose address is given in $a0. 
 
 acquire: 
 
   li   $t0, ________ 
 
   li   $t1, ________ 
 
   cas  $t0, $t1, $a0 
 
   b____ ______ , ______ , acquire 
         
        # repeat if lock not acquired yet 
 
   jr   $ra # return to caller once lock acquired 
 
 
 
(continued next page) 
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Question 7. (cont.)  Definition of compare-and-swap repeated here for reference: 
 
 cas x,y,addr ≡ 
  temp = MEM[addr]; 
  if (temp == x) { 
   MEM[addr] = y; 
  } else { 
   x = temp; 
  } 
 
 
(b)  Compre-and-swap is always implemented as a special instruction in the processor 
and memory system.  Give a technical reason why this is necessary and why the cas 
instruction cannot be correctly replaced by a software procedure that performs the same 
operations as shown in the pseudo-code above. 
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Question 8.  (10 points)  In languages like C, C++, Fortran, and others, it is possible to 
create an array of objects (structs) without allocating the objects individually with new or 
the equivalent construct.  For example, suppose a single complex number is represented 
as a pair of doubles. 
 
 class Complex {  // complex number 
  double re;     // real part 
  double im;   // imaginary part 
 } 
 
When we create an array of Complex data, it would look something like this in memory: 
 

 0 1 2 3 4 5 6 7 8 9 10 … 
 re,im re,im re,im re,im re,im …       

 
 
Now for the question.  We would like to initialize this array to (0.0, 0.0).  Here are two 
possibilities: 
 
     I            II 
 
 for (k = 0; k < n; k++) { for (k = 0; k < n; k++) { 
  a[k].re = 0.0;   a[k].re = 0.0; 
 }         a[k].im = 0.0; 
 for (k = 0; k < n; k++) { } 
  a[k].im = 0.0; 
 } 
 
Is there any reason to prefer one of these solutions over the other for performance or 
other technical reasons?  If so, why; if not, why not? 
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Question 9.  (8 points)  (synchronization)  Inspired by our success in solving the bridge 
traffic problems (hw8), we have been invited back to solve a synchronization problem 
involving cows on a Vermont farm. 
 
This farm has a milking barn with 3 stalls.  Only 3 cows can fit in the barn at a time, 
however if another cow sticks its head in the door, it won’t leave since it wants to be 
milked and eat its dinner. 
 
Use a counting semaphore to implement a pair of procedures to control entry to the barn 
so that at most 3 cows are in the barn at any one time.  Each cow will execute procedure 
enter_barn() before entering the barn and exit_barn() when leaving.  You need 
to provide an initial value for the semaphore ok_to_enter and implementations of 
these two procedures below. 
 
 
 semaphore ok_to_enter = ___________ ; 
 
 
 void enter_barn() { 
 
 
 
 
 
  
 
 } 
 
 void exit_barn() { 
 
 
 
 
 
 
 
 } 
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Question 10.  (8 points)  (deadlocks)  Consider the following resource allocation graph.  
Rectangles indicate resources; circles indicate processes.  There is an arrow from a 
process to each resource it is requesting but does not hold, and an arrow from each 
resource to a process that holds a lock on that resource. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is this system deadlocked?  Why or why not?  (Give a precise reason why there is a 
deadlock or how you can prove that the system is not deadlocked.) 
 
 
 
 
 
 
 
 
 

R1 

 
 
 

R2

P1 P2 P3 


