
 CSE 410 Final Exam Sample Solution 6/08/10

 Page 1 of 10

Question 1. (12 points) (caches)

(a) One choice in designing cache memories is to pick a block size. Which of the
following do you think would be the most reasonable size for cache blocks on a computer
designed for general-purpose laptop or desktop applications? Circle your answer and
justify it.

 8 bytes 64 bytes 512 bytes 2048 bytes

64 bytes takes advantage of spatial locality by loading neighboring data that is likely
to be used after a cache block is first referenced. 8 bytes is too small for this. 512
and, especially, 2048 are so large that cache misses are likely to load lots of data that
is never used, increasing memory traffic for no net benefit in the cache hit rate.

(b) What problem does a 2-way associative cache solve compared to a direct-mapped
one?

In a direct-mapped cache, if two active cache blocks have the same index, they will
continually replace each other, generating a cache miss whenever the other one is
referenced. With a 2-way associative cache, both blocks can reside in the cache at
the same time.

(c) A design choice for a cache memory is whether to use a write-back or a write-
through policy. What is the difference between these?

Write-through: when data is written, the change is immediately written to main
memory as well as the cache.

Write-back: when data is written, only the cache copy is updated. The main
memory copy is not updated until that cache block is evicted from the cache.

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 2 of 10

Question 2. (12 points) Suppose we have a memory system that has a main memory, a
single-level cache, and paging virtual memory. The three levels of the memory system
have the following access times:

 2 ns cache
 100 ns main memory
 10 ms paging disk

(a) The cache has a 95% hit rate. What is the effective memory access time if we
consider only the cache and main memory and ignore page faults and disk access times?
(To save time, you only need to clearly write out the formula, but do not have to simplify
the final result.)

2 + (0.05 * 100) ns = 7 ns.

(b) Now recalculate the effective memory access time assuming the same cache hit rate
(95%) plus a page fault rate of 0.001% (i.e., 99.999% of the memory accesses succeed
without producing a page fault). (Again, a formula is adequate.)

2 + (0.05 * 100) + (0.001 * 10,000,000) ns = 10,007 ns.

Notes: The page fault and cache miss rates are a percentage of the total memory
references, not a percentage of the references to the next level up or down in the
memory hierarchy.

Also, note that the page fault rate in (b) is way too high. That’s not an issue for this
problem, but it’s worth noting that these numbers would not be realistic in actual
systems.

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 3 of 10

Question 3. (12 points) (paging) (a) Belady’s MIN algorithm for replacing pages in a
virtual memory system has the provably lowest page-fault rate of all theoretical or
practical page replacement algorithms. What is this page replacement policy?

Evict the page that will not be referenced for the longest time in the future.

(b) No real systems use Belady’s MIN algorithm. Why not?

Can’t predict the future.

(c) There are several other page replacement algorithms that could be used instead of
MIN in a real system including FIFO, approximate LRU, and randomly picking a page
frame to reuse after a page fault. Which one of these is the best choice for realistic
systems and why?

Approximate LRU. This picks pages that have been unused for a long amount of
time, and it’s reasonable to assume that they are less likely to be used in the near
future than other pages that have been used more recently.

FIFO can easily make a wrong choice if an active page has been in main memory for
a long time, plus it suffers from Belady’s anomaly, where it can actually do a worse
job if it has more page frames available. Random can also make a bad choice
compared to LRU and its approximations.

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 4 of 10

Question 4. (10 points) (threads) Threads can be implemented as user-level threads
using a library package that runs entirely in a process address space, or as kernel-level
threads, where the operating system kernel is aware when a process has more than one
thread associated with it.

(a) Give one advantage that user-level threads have compared to kernel-level threads.

Very low overhead for thread scheduling and context-switch operations compared
to kernel threads.

(b) Give one advantage that kernel-level threads have compared to user-level threads.

Better scheduling decisions if the kernel is aware of all of the threads in the system
and what the various processes are doing. One example: if a single kernel thread
blocks for I/O or some other operation it does not block the entire process, which
can happen if a user-level thread package is managing a single kernel thread.

Kernel threads also allow multiple threads in a single process to run simultaneously
on a system with more than one processor or core.

Question 5. (8 points) Translation Lookaside Buffers (TLBs) have often been
implemented with a fully associative lookup, while cache memories never use this. Give
a brief technical explanation of why a fully associative lookup scheme can make sense
for a TLB but not for a cache.

TLBs are typically fairly small (several dozen to a few hundred entries), so a fully
associative structure can be built at a reasonable cost and without slowing down
memory references. Main memory caches are normally too large for this, plus they
tend to have good hit rates with a moderate amount of associativity and don’t need a
fully associative lookup.

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 5 of 10

Question 6. (10 points) (scheduling) Suppose we have the following jobs to execute,
with the given start times and total times needed for each job.

Job Start Time Total time
A 0 25
B 10 60
C 25 30

Now suppose we execute those jobs using a Round-Robin scheduler with a time quantum
of 20. Fill in the chart below to show the timeline of when each job executes, starting
with time 0 in the first row, and filling in each successive row with a time and the letter
identifying the job that starts or resumes execution at that time. Continue until all of the
jobs are finished. You may not need all the rows. The first row is filled in for you

Time Job

0 A

20 B

40 A

45 C

65 B

85 C

95 B

[105 done]

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 6 of 10

Question 7. (10 points) (locks) In lecture we discussed the implementation of low-level
lock primitives acquire and free. If we represent a lock as a word in memory with
the value 1 when it is held by a thread and 0 when it is free, the free operation is easy –
just store 0 in the lock variable. Acquire needs to set the lock variable to 1, but it must be
done correctly in case some other thread holds the lock or is trying to acquire it.

A common instruction provided on many computers to help with this is compare-and-
swap (cas). A typical version of this involves three registers – two containing values
and a third containing the address of the lock. Here is a pseudo-code description of the
operation of cas:

 cas x,y,addr ≡
 temp = MEM[addr];
 if (temp == x) {
 MEM[addr] = y;
 } else {
 x = temp;
 }

(a) Complete the following assembly language implementation of the operation
acquire that so it can be executed by a thread to acquire a lock correctly. Register
$a0 contains the address of the lock variable. Fill in the blanks, including the correct
conditional branch operand on the “b____” instruction.

 # acquire the lock whose address is given in $a0.

 acquire:

 li $t0, ____0____

 li $t1, ____1____

 cas $t0, $t1, $a0

 beq __$t0__ , __$t1__ , acquire

 # repeat if lock not acquired yet

 jr $ra # return to caller once lock acquired

(continued next page)

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 7 of 10

Question 7. (cont.) Definition of compare-and-swap repeated here for reference:

 cas x,y,addr ≡
 temp = MEM[addr];
 if (temp == x) { *
 MEM[addr] = y;
 } else {
 x = temp;
 }

(b) Compre-and-swap is always implemented as a special instruction in the processor
and memory system. Give a technical reason why this is necessary and why the cas
instruction cannot be correctly replaced by a software procedure that performs the same
operations as shown in the pseudo-code above.

The memory read/modify/write sequence marked (*) above must execute as a single
atomic operation, with no other thread able to read or write the lock variable while
it is in progress. Hardware can guarantee this; it cannot be guaranteed for the
equivalent sequence of individual instructions in software.

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 8 of 10

Question 8. (10 points) In languages like C, C++, Fortran, and others, it is possible to
create an array of objects (structs) without allocating the objects individually with new or
the equivalent construct. For example, suppose a single complex number is represented
as a pair of doubles.

 class Complex { // complex number
 double re; // real part
 double im; // imaginary part
 }

When we create an array of Complex data, it would look something like this in memory:

 0 1 2 3 4 5 6 7 8 9 10 …
 re,im re,im re,im re,im re,im …

Now for the question. We would like to initialize this array to (0.0, 0.0). Here are two
possibilities:

 I II

 for (k = 0; k < n; k++) { for (k = 0; k < n; k++) {
 a[k].re = 0.0; a[k].re = 0.0;
 } a[k].im = 0.0;
 for (k = 0; k < n; k++) { }
 a[k].im = 0.0;
 }

Is there any reason to prefer one of these solutions over the other for performance or
other technical reasons? If so, why; if not, why not?

Yes, II is better. Version II goes through the entire array sequentially. Each cache
block is loaded once and completely processed before going on to the next. Version I
touches each cache block on each loop and there is a good chance that the second
loop will need to reload the cache blocks from main memory if the cache is busy or
the array is large.

If the array is too large to fit in main memory, or if memory is heavily utilized,
version I could also generate significantly more page faults if the pages occupied by
the array have to be brought in again from disk for the second loop.

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 9 of 10

Question 9. (8 points) (synchronization) Inspired by our success in solving the bridge
traffic problems (hw8), we have been invited back to solve a synchronization problem
involving cows on a Vermont farm.

This farm has a milking barn with 3 stalls. Only 3 cows can fit in the barn at a time,
however if another cow sticks its head in the door, it won’t leave since it wants to be
milked and eat its dinner.

Use a counting semaphore to implement a pair of procedures to control entry to the barn
so that at most 3 cows are in the barn at any one time. Each cow will execute procedure
enter_barn() before entering the barn and exit_barn() when leaving. You need
to provide an initial value for the semaphore ok_to_enter and implementations of
these two procedures below.

 semaphore ok_to_enter = _____3______ ;

 void enter_barn() {

 }

 void exit_barn() {

 }

It’s fine if you used other notations like wait(ok_to_enter) or P and V.

 ok_to_enter.wait();

 ok_to_enter.signal();

 CSE 410 Final Exam Sample Solution 6/08/10

 Page 10 of 10

Question 10. (8 points) (deadlocks) Consider the following resource allocation graph.
Rectangles indicate resources; circles indicate processes. There is an arrow from a
process to each resource it is requesting but does not hold, and an arrow from each
resource to a process that holds a lock on that resource.

Is this system deadlocked? Why or why not? (Give a precise reason why there is a
deadlock or how you can prove that the system is not deadlocked.)

Not deadlocked. P3 has all of the resources it needs to execute, so it will proceed.
Once P3 terminates it will release its resources (one each of R1 and R2). At that
point, both P1 and P2 will be able to get the resources they are waiting for and will
be able to execute.

R1

R2

P1 P2 P3

