
 CSE 410 Midterm Exam 4/27/07

 Page 1 of 10

Name ________________________________

Do not write your id number or any other confidential information on this page.

There are 8 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

You will want to use a copy of the “green card” from the textbook. We have additional
copies if you do not have one. Other than that, the exam is closed book, closed notes, etc.

Please wait to turn the page until everyone is told to begin.

 CSE 410 Midterm Exam 4/27/07

 Page 2 of 10

Score _________________ / 100

1. ______ / 6

2. ______ / 4

3. ______ / 10

4. ______ / 10

5. ______ / 16

6. ______ / 20

7. ______ / 20

8. ______ / 14

 CSE 410 Midterm Exam 4/27/07

 Page 3 of 10

Question 1. (6 points) Suppose the 32-bit quantity 0x12345678 is stored at address
1000.

(a) If we interpret these bits as a MIPS machine instruction, what is it? (Use symbolic
forms for the opcode and register names, but if the instruction contains a 16-bit
immediate or displacement field, you can leave that as a hex number and don’t need to
convert it to decimal.)

(b) If this 32-bit word is stored at address 1000 on a big-endian machine, what is the
value of the byte stored at address 1000?

Question 2. (4 points) If we interpret the 32-bit quantity 0x446f6821 as a sequence
of ASCII characters, what are they?

 CSE 410 Midterm Exam 4/27/07

 Page 4 of 10

Question 3. (10 points) Convert the following decimal numbers to 16-bit 2’s
complement numbers. Write the results in both binary and hexadecimal notation.

(a) 410

(b) -90

Question 4. (10 points) For each of the following 16-bit two’s complement hexadecimal
numbers, (i) write the value as a binary number, and (ii) convert the value to a decimal
integer and give its value.

(a) 0x030F

(b) 0xFEED

 CSE 410 Midterm Exam 4/27/07

 Page 5 of 10

Question 5. (16 points) Translate each of the following MIPS assembly instructions to
machine code. Show the results as both binary and hexadecimal 32-bit numbers.

If the instruction is a MIPS assembly-language pseudo-instruction, first show the actual
MIPS instructions that implement it, then translate those instructions to binary and
hexadecimal.

(a) add $v0,$a2,$t4

(b) addi $s1,-3

(c) move $s3,$ra

(d) sw $t3,32($a1)

 CSE 410 Midterm Exam 4/27/07

 Page 6 of 10

Question 6. (20 points) Consider the following fragment of MIPS code.

 loop:
 lw $t2,0($t0)
 add $t3,$t3,$t2
 sw $t3,0($t0)
 addi $t0,4
 addi $t1,-1
 here:
 bne $t1,$zero,loop
 done:

Now assume that registers and memory are initialized as shown in the “initial” column of
the following tables (all values are decimal numbers, not hex).

Register Initial 1st “here” 2nd “here” etc.

$t0 1000
$t1 3

$t2 -1

$t3 0

Memory Initial 1st “here” 2nd “here” etc.

1000 2

1004 4

1008 6

1012 8

(a) Trace the execution of the MIPS code above. Write down the contents of the listed
registers and memory locations each time execution reaches the label “here:” in the
program. If you need an extra column, go ahead and add it.

(b) Below, describe what the program fragment does in a short sentence or two.

 CSE 410 Midterm Exam 4/27/07

 Page 7 of 10

Question 7. (20 points) Write a function in MIPS assembly language to locate and
return the largest value in an integer array. In Java the function would be specified as
follows (C, C++, and other languages are similar):

 /* Given an array A containing n integers, return */
 /* the largest integer found in A[0]...A[n-1] */
 int findmax(int[] A, int n) { ... }

Your function should use the standard MIPS calling and register conventions. For
example, the following code could be used to call the function to find the largest integer
in a 10-element array starting at location nums:

 la $a0,nums # $a0 = array address
 li $a1,10 # $a1 = number of array elements
 jal findmax # call function findmax

Write your code on the next page. You may assume that the array has at least 1 element
(i.e., the number of elements in $a1 will be greater than 0).

Suggestion: Use the rest of this page to sketch out your solution, perhaps by writing fairly
low-level Java, C, or other code. Once you’ve organized your thoughts, write your
answer on the next page.

(continue on the next page)

 CSE 410 Midterm Exam 4/27/07

 Page 8 of 10

Question 7. (cont.) Write your answer below.

 CSE 410 Midterm Exam 4/27/07

 Page 9 of 10

Question 8. (14 points) The following MIPS code could be used to increment the value
of two integer variables (similar to “i++; j++” in Java).

 li $t0,1 # load 1 into $t0
 lw $t1,100($t5) # load first variable
 add $t1,$t0,$t1 # increment
 sw $t1,100($t5) # store
 lw $t2,104($t5) # load 2nd variable
 add $t2,$t0,$t2 # increment
 sw $t2,104($t5) # store

(a) Draw a diagram showing how these instructions are executed in the standard 5-stage
MIPS pipeline. You should assume that words loaded from memory are available
immediately after the MEM cycle of the instruction (i.e., data is immediately available
from the cache). You may also assume that the usual forwarding of results from the EX
cycle of one instruction immediately into another is available Your diagram should show
all of the remaining stall cycles due to dependencies in the code.

(continued next page)

 CSE 410 Midterm Exam 4/27/07

 Page 10 of 10

Question 8 (cont). Code repeated for reference below:

 addi $t0,1 # load 1 into $t0
 lw $t1,100($t5) # load first variable
 add $t1,$t0,$t1 # increment
 sw $t1,100($t5) # store
 lw $t2,104($t5) # load 2nd variable
 add $t2,$t0,$t2 # increment
 sw $t2,104($t5) # store

(b) Can you reorder the instructions to reduce the total number of cycles needed to
perform the same computation? If so, show the new order and draw a new diagram
showing how the reordered instructions are executed in the pipeline.

(c) How many total cycles were needed to execute the instructions in the original order?
How many cycles are needed in the new order?

