

CSE 410 - Spring 2006
Final Exam

Closed book, no notes, no electronic devices

The appendix includes various tables and figures that you
will find useful in working the problems.

One of the appendix tables gives you all the powers of 2.
Do not try to calculate 2n by hand, read it from the table!

Name:

UWNetid :

This page is for use by the graders in recording the scores.

Page 1 of 10 points

Page 2 of 7 points

Page 3 of 5 points

Page 4 of 10 points

Page 5 of 8 points

Page 6 of 6 points

Total of 46 points possible

CSE 410 - Sp 06 Final Exam

 Page 1 of 6

1. (4pt) Fill in the blanks.

a. 1112 (binary) is equal to 10 (decimal).

b. 1010 (decimal) is equal to 16 (hexadecimal).

c. A 2-bit field in a binary number can hold different values.

d. A hexadecimal number like FEDC16 can be represented exactly as a binary number. How

many binary digits are needed to represent each of the hexadecimal digits?

2. (4pt) Answer True or False for each question.

a. T F A system with two CPUs might have four threads in the ready state at the same

time.

b. T F A disk file that is allocated sequentially must fit entirely within one track on the

disk surface.

c. T F A process is a dynamic entity with an associated address space.

d. T F In an operating system with pre-emptive scheduling, there must be some sort of

external interrupt that can take control away from a running thread and give it to
the scheduler.

3. (2pt) A thread control block is the generic term for the table that holds information about a
running thread. Of the many entries that are held in a thread control block, name two of them and
briefly describe their purpose.

CSE 410 - Sp 06 Final Exam

 Page 2 of 6

4. Consider the screenshot of the Windows Task Manager shown in Figure A2 in the appendix. This
system has Windows 2000 / one CPU / one gigabyte of memory. During the period of time covered by
the history shown, I was running three user application programs: Word (word processor), Firefox
(web browser), and PaintShop (image editor). Each of these programs was run as a separate process.

a. (1pt) In addition to these three processes, how many other processes were running on my machine

at the time the snapshot was taken?

b. (2pt) Notice that the kernel is using more than 130 MB of memory, of which more than 25 MB is

“nonpaged”. Give an example of an operating system task that might require some amount of
nonpaged memory. Describe why you think this might require nonpaged memory.

During the entire period of time shown in the screenshot, Firefox was downloading a very large file.
You can see the CPU usage bouncing along between 0 and 5% when the download is the only activity.
The first major burst of CPU activity is when I started PaintShop. I then loaded an image file, did two
CPU-intensive image processing operations, and eventually exited PaintShop.

c. (2pt) Do you think that PaintShop was CPU-bound at any point during this time? If yes, describe

when this was true and what evidence you see for this; if no, describe why not.

d. (2pt) Do you think that Firefox was IO-bound at any point during this time? If yes, describe when

this was true and what evidence you see for this; if no, describe why not.

CSE 410 - Sp 06 Final Exam

 Page 3 of 6

5. Again consider the Windows Task Manager, figure A2.

One thread in the Firefox process performed the file download (which continued throughout the entire
time shown). One thread in PaintShop read and initialized all the various image filters and program
extensions when the program was first loaded and then continued running to process user commands.

a. (1pt) In addition to the two threads described above, how many other threads were running on my

machine at the time the snapshot was taken?

b. (2pt) The three primary thread states that we discussed are running, waiting, and ready. Consider

the period while PaintShop was first loading into memory. Describe a situation in which both the
Firefox and PaintShop threads might have been in the same state (ie, both threads are running,
waiting, or ready) during this period. Explain why each thread is in the chosen state in your
example.

c. (2pt) During most of the time shown here most of the other threads on the machine were all in the

same thread state. What state is that most likely to be?
Explain why you think this is the likely choice.

CSE 410 - Sp 06 Final Exam

 Page 4 of 6

6. One of the key abstractions that have made modern systems possible is the separation of virtual
addresses used by the program from the physical addresses in memory. In a paged system, a
memory mapping unit translates virtual page numbers to physical page numbers. For example,
consider this architecture for mapping virtual byte addresses to physical byte addresses:

a. (2pt) In the scheme shown above, is the virtual address space of each process larger or smaller than

the physical address space of the system?
Larger Smaller

b. (2pt) By what factor is the virtual address space larger or smaller than the physical address space?

c. (2pt) How many bytes are included in each page of memory in this system?

d. (2pt) How many bytes of physical memory can be addressed using this system?

e. (2pt) One way to implement this memory mapping scheme would be with a 2-level page table for

each process address space. Indicate on this drawing where you would divide the virtual page
number so that the system could pick one of 16 possible top level tables, each of which contains
65,536 entries. Label the resulting “table index” and the “entry index” fields on the drawing.

12-bit offset within page

12-bit offset within page

Memory Mapping Unit

Program Virtual Address

Physical Memory Address

20-bit virtual page number

18-bit physical page number

12-bit offset within page

12-bit offset within page

Memory Mapping Unit

Program Virtual Address

Physical Memory Address

20-bit virtual page number

18-bit physical page number

12-bit offset within page Program Virtual Address20-bit virtual page number 12-bit offset within page Program Virtual Address20-bit virtual page number

CSE 410 - Sp 06 Final Exam

 Page 5 of 6

7. For this question, refer to figure A3, Memory Mapping, in the appendix.

One of the capabilities enabled by the use of paging is demand paging. For this problem, assume that
we are using a 16-bit virtual addressing scheme with 4-bit virtual page numbers, as shown in figure
A3.

The memory management unit in this problem keeps three pieces of information about each virtual
page: valid?, in?, and physical page number (PPN). A page is valid if the given virtual address is valid
for this address space. (An address is valid if there can be code or data at that location, it is invalid if
nothing can be put there.) A page is in if it is loaded in physical memory, it is not in if it is mapped to
the page file. The physical page number points to a virtual page’s location in memory or on disk as
appropriate.

a. (2pt) How many pages of the given program are actually in memory at the time shown in the

figure?

b. (2pt) Give an example of an address that will cause a page fault and cause the operating system to

read from the page file. Give your answer as a 4-digit hexadecimal number.

c. (2pt) Given the configuration of memory shown here, is it likely that this system is suffering from

external fragmentation of memory, meaning that there is not enough contiguous free memory to
load another program? Explain why external fragmentation is or is not a problem for this system.

d. (2pt) Describe a circumstance in which there will be internal fragmentation on one of the pages in

memory. This does not have to be a long involved answer; just describe how internal
fragmentation can happen in this system.

CSE 410 - Sp 06 Final Exam

 Page 6 of 6

8. For this question, refer to figure A4, Data Acquisition System, in the appendix.

a. (2pts) The network connection is a BufferedOutputStream. Should the getData process call the

flush() method after it writes each data packet? Briefly explain your answer.

b. (2pts) Which synchronization construct is more likely to be useful for managing access to the

common data area in item Ⓑ: a plain lock (ie, a mutex, a synchronized object) or a monitor (a lock
and associated wait / notifyAll logic)? Explain your choice and say why it is more appropriate
than the alternative.

c. (2pts) Which synchronization construct is more likely to be useful for managing access to the

control variables in item Ⓒ: a plain lock (ie, a mutex, a synchronized object) or a monitor (a lock
and associated wait / notifyAll logic)? Explain your choice and say why it is more appropriate than
the alternative.

CSE 410 - Sp 06 Appendix to the Final Exam

 Page 1 of 4

Figure A1, Table of powers of 2. For general information in several questions.

Term Count Power
1 Byte 1 20
 2 21
 4 22
 8 23
 16 24
 32 25
 64 26
 128 27
 256 28
 512 29
1 KB 1,024 210
 2,048 211
 4,096 212
 8,192 213
 16,384 214
 32,768 215
 65,536 216
 131,072 217
 262,144 218
 524,288 219
1 MB 1,048,576 220
 2,097,152 221
 4,194,304 222
 8,388,608 223
 16,777,216 224
 33,554,432 225
 67,108,864 226
 134,217,728 227
 268,435,456 228
 536,870,912 229
1 GB 1,073,741,824 230
2 GB 2,147,483,648 231
4 GB 4,294,967,296 232

CSE 410 - Sp 06 Appendix to the Final Exam

 Page 2 of 4

Figure A2, Windows Task Manager. For question 4.

CSE 410 - Sp 06 Appendix to the Final Exam

 Page 3 of 4

Figure A3, Memory Mapping. For question 7.

0

program
address

VPN

1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

physical
memory

page file
on disk

y
valid?

y
y
y
y
y
n
n
n
n
y
y
y
y
y
y

1
PPN

3
4
6
5
0

3
4
5
6
7
7

MMU 0
1
2
3
4
5
6
7
...

data PPN

0
1
2
3
4
5
6
7
...

data block

y
in?

y
y
y
y
n
n
n
n
n
n
n
n
n
n
y

0

program
address

VPN

1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

physical
memory

page file
on disk

y
valid?

y
y
y
y
y
n
n
n
n
y
y
y
y
y
y

1
PPN

3
4
6
5
0

3
4
5
6
7
7

MMU 0
1
2
3
4
5
6
7
...

data PPN

0
1
2
3
4
5
6
7
...

data block

y
in?

y
y
y
y
n
n
n
n
n
n
n
n
n
n
y

12-bit offset within page

12-bit offset within page

MMU

Program Virtual Address

Physical Memory Address

4-bit VPN

8-bit PPN

12-bit offset within page

12-bit offset within page

MMU

Program Virtual Address

Physical Memory Address

4-bit VPN

8-bit PPN

CSE 410 - Sp 06 Appendix to the Final Exam

 Page 4 of 4

Figure A4, Data Acquisition System. For question 8.

This system has two processes. The first process acquires data values from a data acquisition unit.
The getData process spends most of its time waiting for data to become available. When data is
available, getData creates a data packet and sends it to the display process over a network
connection (using a write statement on an output stream). It then loops and waits for more data
from the acquisition unit. The network connection is item Ⓐ in the figure.

The second process is multithreaded. A receiving thread reads data from the network when it
arrives, calculates some characteristic values, and stores them in a common data area on the heap.
The receiving thread takes much less time to loop than the getData process does. The common data
area is item Ⓑ in the figure.

There are two display threads that execute a loop every time a new set of characteristic values is
made available by the receiving thread. They format and display the current collection of data
values on a display unit. The display threads read but do not change any values in the common data
area.

There is a control thread that receives occasional commands from a control console. It does not
change the display values, but it does update values it shares with the calculation thread. These
control variables are read by the receiver each time it receives a new data packet from the getData
process. The control variables are marked as item Ⓒ in the figure.

display
data acquisition

getData

common data area

external devices

data acquisition
process

receiver
thread

display
process

control
thread

control console

display
thread

display

display
thread

control variables

A

B

C

display
data acquisition

getData

common data area

external devices

data acquisition
process

receiver
thread

display
process

control
thread

control console

display
thread

display

display
thread

control variables

A

B

C

