Introduction

CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410/
Reading and References

• Reading
 » *Computer Organization and Design, Patterson and Hennessy*
 • Chapter 1 (background)
 • Chapter 2, secs. 2.1-2.5
Administrative

• Instructor:
 » Hal Perkins
 » perkins@cs.washington.edu, CSE548

• TA:
 » Braden Pellett

• All class info is on the web site
 » http://www.cs.washington.edu/410
Class Overview

• Provide an introduction to the inner workings of computer systems

• Levels of abstraction
 » bits, bytes, assembly language
 » operating system concepts
 » higher level languages - C, C++, Java, …
 » application programs
Goal

• You will understand
 » what is actually happening when a computer system is running application programs

• So that you will be able to
 » make good design choices as a developer, project manager, or system customer
 » calibrate your hype-o-meter with facts
The structure of this class

• The hardware / software interface
 » the elements of a computer system
 » what parts are visible to the software
 » instruction set architecture (ISA)
 » what happens inside the CPU

• Operating systems
 » services an OS performs for an application
 » design of various OS components
 » OS mechanisms and policies
Course Mechanics

• 3 Lectures/week
• Homeworks most weeks
 » Written problems, small programming exercises
• Office hours tba, scattered through week
 » Use them!
• Online discussion board to stay in touch between classes / office hours
Homework & Exams

• ≈ 6-7 assignments (50%)
• Midterm, tentatively Fri. May 1 (20%)
• Final, Tue. June 9, 2:30 (25%)
• Participation, citizenship, etc. (5%)

• Late policy: 4 “late days”, at most 2 on any assignment, counted in 24 hour chunks, otherwise no late assignments.
 » Save late days for later!
Academic Integrity

• Policy on the course web. **Read it!**
• Do your own work – always explain any unconventional action on your part
• I trust you completely
• I have no sympathy for trust violations – nor should you
• Honest work is the most important feature of a university. It shows respect for your colleagues and yourself.
Computers

• Computers impact our lives in a huge number of ways:
 » Computer-controlled brakes in your car
 » You look up everything with Google
 » You take a picture of a bad cut with your cell phone and email it to your doctor
 » You download music for your MP3 player

• All this has been enabled by an incredible advance in microprocessor technology
Evolution of Intel CPU Speeds

![Graph showing the evolution of Intel CPU speeds over time. The x-axis represents years from 1971 to 2003, and the y-axis represents speed in MHz. The graph shows a significant increase in CPU speed from the early 1970s to the late 1990s and early 2000s.]
Illustration of Moore’s Law

CPU Transistor Counts 1971-2008 & Moore’s Law

Curve shows ‘Moore’s Law’; transistor count doubling every two years
A modern CPU

• Recent Intel chips…
 » 2-8 cores
 » > 3.0 gigahertz
 » >= 2 MB L2 cache
 » up to 20-stage pipeline (P4, less for others)
 » out-of-order instruction execution
 » branch prediction
 » 100s of instructions executing at once
 » “hyper-threading” technology
 » …….
What’s next

• We’re in trouble
 » hard to go much faster – gets too hot!
 » chips have gotten so big, it’s a long way from one side to the other (in cycles)
 » as chips get bigger, chance of errors in the chip goes up
 » we need new ways to build faster computers
 » these new ways usually involve adding more parallelism

• In a few years, every chip will have multiple CPUs on it (2-4 now, 16-64 soon) [called “multi-core”]
 » (How will we take advantage of this? Open question…)
Layers of abstraction

• Abstraction
 » defines a layer in terms of functions / interfaces
 » isolates a layer from changes in the layer below
 » improves developer productivity by reducing detail needed to accomplish a task
 » helps define a single architecture that can be implemented with more than one organization

• Layers can be hardware, software, or a combination
Architecture and Organization

• Architecture (the boxes)
 » defines elements and interfaces between layers
 » ISA: instructions, registers, addressing

• Organization (inside the boxes)
 » components and connections
 » how instructions are implemented in hardware
 » many different organizations can implement a single architecture
 » One organization can support multiple architectures(!)
Computer Architecture

• Specification of how to program a specific computer family
 » what instructions are available?
 » how are the instructions formatted into bits?
 » how many registers and what is their function?
 » how is memory addressed?
 » how does I/O work?

• The MIPS architecture is the basis for the first half of this course
 » Why not a “real” computer? (e.g., x86)
Architecture Families

- IBM 360, 370, … (the first computer family)
- PowerPC 601, 603, …
- DEC VAX, PDP-11
- Intel x86: 286, 386, 486, Pentium, P4, Core…
- Intel IA64 Itanium
- MIPS R2000, R3000, R4000, R5000, …
- SUN Sparc
- ARM family
Computer Organization

• Processor
 » datapath (functional units) manipulate the bits
 » control hardware manages the manipulation

• Memory
 » Registers – 100s of bytes, very fast, on the CPU
 » cache memory – 1000s of bytes, fast, on the CPU
 » main memory – millions of bytes, slower, off the CPU

• Input / Output
 » interface to the rest of the world
A typical organization

- Main memory
- Processor/memory bus
- Processor
- Processor/memory bus
- I/O bus
- Hard disk
- Video/camera
- Optical drive
- Serial ports
- Network interface
Change Organization or Architecture?

• Theory
 » Organization changes provide incremental changes in speed and cost for same software
 » Architecture changes enable breakthrough changes in speed and cost for new software

• Real life
 » incremental changes are very rapid (once a year)
 » breakthrough changes are very costly (once a decade)