Threads

CSE 410, Spring 2007
Computer Systems

http://www.cs.washington.edu/410

A Process

• A complete process includes numerous things
 » address space (all the code and data pages)
 » OS resources and accounting information
 » a “thread of control”, which defines where the process is currently executing
 • the Program Counter
 • CPU registers

Processes are heavyweight objects

• Creating a new process is costly
 » lots of data must be allocated and initialized
 » operating system control data structures
 » memory allocation for the process

• Communicating between processes is costly
 » most communication goes through the OS
 » need a context switch for each process

Reading and References

• Reading
 » Chapter 5, Operating System Concepts, Silberschatz, Galvin, and Gagne

• Other References
 » Microsoft Windows Internals
 » Pthreads Programming, Nichols, Buttlar and Farrell
Parallelism

- With multiple paths of execution, we can implement (or simulate) simultaneous actions
- Why build a parallel program?
 - responsiveness to user
 - user interface always responds quickly
 - server handling simultaneous requests (web, etc.)
 - each request is handled independently
 - execute faster on a multiprocessor
 - two CPUs can run two programs at once

Parallel processes are expensive

- There’s a lot of performance cost
 - creating separate processes
 - coordinating them through the OS
- There’s a lot of duplication
 - same program code, protection, etc…
- Maybe there’s a simpler way (at least some of the time) ...

Process definition

- What is fundamental in a process?
 - Code and data
 - Access and control privileges
 - Operating system management
 - scheduling, address space/memory map, ...
- What else is there?
 - Program Counter, registers, and stack
- Separate the idea of “process” from the idea of a “thread of control” (PC, SP, registers)

Threads are “Lightweight Processes”

- Most operating systems now support two entities
 - the process, which defines the address space and general process attributes
 - the thread, which defines one or more execution paths within a process
- Threads are the unit of scheduling
- Processes are the “containers” in which threads execute
Multi-threaded design benefits

- Separating execution path from address space simplifies design of parallel applications
- Some benefits of threaded designs
 - improved responsiveness to user actions
 - handling concurrent events (e.g., web requests)
 - simplified program structure (code, data)
 - more efficient and so less impact on system
 - map easily to multi-processor systems

One thread

Three threads

Cookbook Analogy

- Think of a busy kitchen
 - 3 cooks and 1 cookbook
- Each cook maintains a pointer to where they are in the cookbook (the Program Counter)
- Two cooks could both be making the same thing (threads running the same procedure)
- The cooks must coordinate access to the kitchen appliances (resource access control)

Implementation

- A thread is bound to the process that provides its address space
- Each process has one or more threads
- How are threads actually implemented?
 - Kernel threads
 - In the kernel (OS) and user mode libraries combined
 - User threads
 - In user mode libraries alone
Kernel Threads

- The operating system knows about and manages the threads in every program
- Thread operations (create, yield, ...) all require kernel involvement
- Major benefit is that threads in a process are scheduled independently
 - one blocked thread does not block the others
 - threads in a process can run on different CPUs

Kernel Thread Performance

- Kernel threads have performance issues
- Even though threads avoid process overhead, operations on kernel threads are still slow
 - a thread operation requires a kernel call
 - kernel threads may be overly general, in order to support needs of different users, languages, etc.
 - the kernel can’t trust the user, so there must be lots of checking on kernel calls

User Threads

- To make thread operations faster, they can be implemented at the user level
 - Each thread is managed by the run-time system
 - user-mode libraries are linked with your program
- Each thread is represented simply by a PC, registers, stack and a control block, managed in the user’s address space

User Thread Performance

- All activities happen in user address space so thread operations can be faster
- But OS scheduling takes place at process level
 - block entire process if a single thread is I/O blocked
 - may run a process that is just running an idle thread
- Win2K provides “fibers” as user mode threads
 - application can schedule its own “lightweight threads” in user mode code