Introduction

CSE 410, Spring 2005
Computer Systems

http://www.cs.washington.edu/education/courses/410/05sp/

Reading and References

• Reading
 » Chapter 1, Computer Organization and Design, Patterson and Hennessy
 » Chapter 3, read 3.1 through 3.4

Administrative

• Instructor:
 » Hank Levy
 » levy@cs.washington.edu
• TAs:
 » Scott Schremmer (scotths@cs.washington.edu)
 » Charles Giefer (cgiefer@cs.washington.edu)
• All class info is on the web site
 » http://www.cs.washington.edu/410/CurrentQtr

Class Overview

• Provide an introduction to the inner workings of computer systems
• Levels of abstraction
 » bits, bytes, assembly language
 » operating system concepts
 » higher level languages - C, C++, Java, …
 » application programs
Goal

• You will understand
 » what is actually happening when a computer system is running application programs
• So that you will be able to
 » make good design choices as a developer, project manager, or system customer
 » calibrate your hype-o-meter with facts

The structure of this class

• The hardware / software interface
 » the elements of a computer system
 » what parts are visible to the software
 » instruction set architecture (ISA)
 » what happens inside the CPU
• Operating systems
 » services an OS performs for an application
 » design of various OS components
 » OS mechanisms and policies
 » why my OS crashes

Computers

• Computers impact our lives in a huge number of ways:
 » Computer-controlled brakes in your car
 » You look up everything with Google
 » You take a picture of a bad cut with your cell phone and email it to your doctor
 » You download music for your MP3 player
• All this has been enabled by an incredible advance in microprocessor technology
Illustration of Moore’s Law

A modern CPU

- Latest Intel P4
 » 3.6 gigahertz
 » 2 MB L2 cache
 » 20-stage pipeline
 » out-of-order instruction execution
 » branch prediction
 » 100s of instructions executing at once
 » “hyper-threading” technology
 » …….

What’s next

- We’re in trouble
 » hard to go much faster with uniprocessors
 » chips have gotten so big, it’s a long way from one side to the other (in cycles)
 » as chips get bigger, chance of errors in the chip goes up
 » we need new ways to build faster computers
 » these new ways usually involve adding more parallelism
- In a few years, every chip will have multiple CPUs on it (maybe 4 to 16) [called “multi-core”]

Layers of abstraction

- Abstraction
 » defines a layer in terms of functions / interfaces
 » isolates a layer from changes in the layer below
 » improves developer productivity by reducing detail needed to accomplish a task
 » helps define a single architecture that can be implemented with more than one organization
Architecture and Organization

• Architecture
 » defines elements and interfaces between layers
 » ISA: instructions, registers, addressing
• Organization
 » components and connections
 » how instructions are implemented in hardware
 » many different organizations can implement a single architecture

Computer Architecture

• Specification of how to program a specific computer family
 » what instructions are available?
 » how are the instructions formatted into bits?
 » how many registers and what is their function?
 » how is memory addressed?
 » how does I/O work?
• The MIPS 1 architecture is the basis for the first half of this course

Architecture Families

• IBM 360, 370, … (the first computer family)
• PowerPC 601, 603, …
• DEC VAX, PDP-11
• Intel x86: 286, 386, 486, Pentium, P4,…
• Intel IA64 Itanium
• MIPS R2000, R3000, R4000, R5000, …
• SUN Sparc

Computer Organization

• Processor
 » datapath (functional units) manipulate the bits
 » control hardware manages the manipulation
• Memory
 » Registers – 100s of bytes, very fast, on the CPU
 » cache memory – 1000s of bytes, fast, on the CPU
 » main memory – millions of bytes, slower, off the CPU
• Input / Output
 » interface to the rest of the world
Architecture and Organization

- Architecture is a layer of abstraction
- One architecture can be implemented with many organizations
- One organization can support multiple architectures
- Different manufacturing technologies

Many possible implementations

A typical organization

Change Organization or Architecture?

- Theory
 » Organization changes provide incremental changes in speed and cost for same software
 » Architecture changes enable breakthrough changes in speed and cost for new software
- Real life
 » incremental changes are very rapid (once a year)
 » breakthrough changes are very costly (once a decade)