Performance Analysis

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

Readings and References

• Reading
 » Chapter 2, Computer Organization & Design, Patterson and Hennessy

• Other References

Performance Analysis - When?

• Evaluation prior to system purchase
 » deciding which system is right for the need
 » very speculative and uncertain
 • unknown future workload, future capability
• Tuning prior to product release
 » product must meet expectations or it won’t sell
 » very speculative and uncertain
 • sensitive to configuration, workload

Understand your Environment

• The question is “what system to buy?”
 » or design to select, or vendor to hire, etc
• Performance analysis is fun
 » you get to look at all sorts of machines and their inner workings
• It’s very easy to analyze the wrong things ...
 ... and then your analysis will lead you to a wrong answer
Time to complete task

- The best metric is time to complete the task, as perceived by the user
- Total performance is the sum of many individual factors and perceptions
- Understand the task and the expectations
 » write down the tasks to be accomplished
 » write down the user expectations for performance

Evaluation tools

- Simulation
 » necessary if there is no system in place yet
 » accuracy of the simulation is critical
 - how is accuracy defined?
- Prototypes
 » accuracy is critical - it looks real, but you don’t have the real product in hand yet
 - where are the simplifications, are they important?

Benchmarks

- High potential for misleading results
- May not reflect actual operation at all
 » reading from disk controller cache, not disk
 » product vendor tweaked system for benchmark
- Simplified representation of the workload may completely miss critical factors
 » eg, operating system performance under heavy user load

Better benchmarks

- Benchmarks derived from real applications
 » Standard Performance Evaluation Corp (SPEC)
- Test hardware
 » simulated users at simulated keyboards
- Prototype deployment
 » actually build an initial version of the application and deploy it on a limited scale
Validate!

- Your users do not think of the system the same way you do - guaranteed!
- Document your assumptions
- Use several different types of benchmarks
- Keep an open mind
 » pay attention to business issues too, or you will be surprised when your choice is not selected

SPEC Benchmarks

- “Establish, maintain, and endorse standardized set of relevant benchmarks and metrics for performance evaluation of computer systems”
 » numeric computing
 » web servers
 » graphic subsystems
- Test the CPU, memory hierarchy, compilers
 » Fortran, C, C++
 » Integer and Floating Point sections

CPU 2000

- Compression
- FPGA circuit placement
- C compiler
- Combinatorial Optimizer
- Chess
- Word Processing
- Visualization
- Perl
- Group Theory
- OO Database
- Place and route simulator
- Quantum physics
- Shallow water model
- Multi-grid field
- Partial Dif. Equations
- 3D Graphics
- Fluid Dynamics
- Image recognition
- Seismic wave simulation
- Image processing
- Chemistry, Meteorology
- Number theory

More SPEC Benchmarks

- Java Virtual Machines
- server-side Java
- shared-memory parallel programming
- SMTP and POP3 mail servers
- NFS (network file server) computers
- World Wide Web Servers
- System MultiTasking performance
- high-end industrial-style applications
- graphics performance
Tuning - Design for speed

- Think about performance early and often
- Good algorithms first
 - throw faster hardware at it only when you can’t think of anything else
- Product is almost ready, but ...
 - particular data models cause problems
 - many concurrent users cause problems
 - etc

Tuning - The product is slow

- Let the numbers tell you what to work on
- Don’t assume anything!
 - I/O bottlenecks, memory thrashing, unusual data sets, unexpected usage patterns, ...
 - the problems can be anywhere
 - the solutions can be anywhere
- Make sure you are solving real performance issues as perceived by the real users

Tuning Tools

- Clock on the wall
 - Remember your customer - web user with modem, corporate end user, sysadmin
- High level statistics from the program
 - functions performed and time elapsed
- Profiling
 - detailed information about instruction history
 - logic analyzer tracing for embedded systems

Profiling

- Continuously sample CPU state
 - built-in performance counters (eg I-cache miss)
 - sample program counter and context
- Procedure level
 - Where are we spending the most time?
- Instruction level
 - What are we doing there?
 - Why is it taking so long?