Introduction

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/
Reading and References

• Reading
 » Chapter 1, *Computer Organization and Design*, Patterson and Hennessy

• Other References
 » The Rope and Pulley Wonder, in *The Tinkertoy Computer*, A. K. Dewdney
Administrative

• Instructor:
 » Doug Johnson
 » djohnson@cs.washington.edu

• All class info is on the web site
 » http://www.cs.washington.edu/410
 » also known as
 • http://www.cs.washington.edu/education/courses/cse410/04sp/
Class Overview

• Provide an introduction to the inner workings of computer systems
• Levels of abstraction
 » bits, bytes, assembly language
 » operating system concepts
 » higher level languages - C, C++, Java, …
 » application programs
Goal

• You will understand
 » what is actually happening when a computer system is running application programs
• So that you will be able to
 » make good design choices as a developer, project manager, or system customer
 » calibrate your hype-o-meter with facts
The structure of this class

• The hardware / software interface
 » the elements of a computer system
 » what parts are visible to the software
 » instruction set architecture (ISA)

• Operating systems
 » services an OS performs for an application
 » design of various OS components
Elements of a computer system

• Start with a point of view
 » purchase a CD on the Web
 » get class schedule from MyUW
 » write a resume using Word
 » write a Java program to do image processing
 » write a C program to read real time data
 » write assembly language for matrix operations
 » write microcode for instruction emulation
“Top Level” elements

• At any level of abstraction, there are
 » elements at that level
 » the building blocks for those elements

• Rope analogy in the book
 » a cable: three hawsers twisted together
 » a hawser: three strands of many yarns
 » down to the molecular level and beyond
Purchase a CD on the Web

• the “top level” system includes
 » your browser, your desktop computer
 » connection to the internet (ISP)
 » server - http://www.amazon.com/
 » server application code
 • method="POST"
 • action="/exec/obidos/handle-buy-box=B00005NFZB/…"
 • ...

Write a resume using Word

• the “top level” system includes
 » winword.exe - the application program
 » Contemporary Resume.dot - document template
 » resume.doc - the file containing the text
 » Windows Explorer - file manager
 » network file and printer sharing
assembly language for matrix operations

• the “top level” system includes
 » programmer’s editor (eg, Context)
 » assembler - convert source to machine language
 » linker, loader - build and run executable
 » Instruction Set Architecture (ISA) that you are
 writing the code for
 • defines the programmer-visible face of the CPU
 • in this class, we will be writing for MIPS 1 ISA
Layers of abstraction

• Abstraction
 » isolates a layer from changes in the layer below
 » improves developer productivity by reducing detail needed to accomplish a task
 » helps define a single architecture that can be implemented with more than one organization
Architecture and Organization

• Architecture
 » defines elements and interfaces between layers
 » ISA: instructions, registers, addressing

• Organization
 » components and connections
 » how instructions are implemented in hardware
 » many different organizations can implement a single architecture
Computer Architecture

- Specification of how to program a specific computer family
 - what instructions are available?
 - how are the instructions formatted into bits?
 - how many registers and what is their function?
 - how is memory addressed?
- The MIPS 1 architecture is the basis for the first half of this course
Architecture Families

- IBM 360, 370, …
- PowerPC 601, 603, …
- DEC PDP-11
- Intel x86 286, 386, 486, Pentium, …
- Motorola 680x0
- MIPS R2000, R3000, R4000, R5000, …
Computer Organization

- Processor
 - datapath (functional units) manipulate the bits
 - control controls the manipulation

- Memory
 - cache memory - smaller, higher speed
 - main memory - larger, slower speed

- Input / Output
 - interface to the rest of the world
Organizations and Architectures

• Architecture is another abstraction layer
• One architecture can be implemented with many organizations
• One organization can support multiple architectures
• Different manufacturing technologies
 » TTL, ECL, PMOS, NMOS, CMOS
 » ropes and pulleys - see Dewdney reference
Many possible implementations

Figure 2.4 The Apraphulian AND gate.
A typical organization

main memory

processor

I/O bus

hard disk floppy disk CDROM drive serial ports network interface

processor/memory bus
Change Organization or Architecture?

• Theory
 » Organization changes provide incremental changes in speed and cost for same software
 » Architecture changes enable breakthrough changes in speed and cost for new software

• Real life
 » incremental changes are very rapid
 » breakthrough changes are very costly
A quick hardware tour

- System board
 - CPU, memory, I/O bus
- Hard disk
 - 3600+ RPM, 8ms latency, 3-15 ms seek
- Monitor
 - CRT, LCD
- Mouse, keyboard
 - embedded processors