CSE 410 - Computer Systems
Autumn 2001

http://www.cs.washington.edu/410

Administrative

• Instructor:
 – Doug Johnson
 – djohnson@cs.washington.edu

• All class info is on the web site
 – also known as
 • http://www.cs.washington.edu/education/courses/cse410/01au/

Class Overview

• Provide an introduction to the inner workings of computer systems
• Levels of abstraction
 – bits, bytes, assembly language
 – operating system concepts
 – higher level languages - C, C++, Java, …
 – application programs

Goal

• You will understand
 – what is actually happening when a computer system is running application programs
• So that you will be able to
 – make good design choices as a developer, project manager, or system customer
• In other words ...
 – calibrate your hype-o-meter with facts

The structure of this class

• The hardware / software interface
 – the elements of a computer system
 – what parts are visible to the software
 – instruction set architecture (ISA)
• Operating systems
 – services an OS performs for an application
 – design of various OS components

Elements of a computer system

• Start with a point of view
 – purchase a CD on the Web
 – get class schedule from MyUW
 – write a resume using Word
 – write a Java program to do image processing
 – write a C program to read real time data
 – write assembly language for matrix operations
 – write microcode for instruction emulation
“Top Level” elements

• At any level of abstraction, there are
 – elements at that level
 – the building blocks for those elements
• Rope analogy in the book
 – a cable: three hawsera twisted together
 – a hawser: three strands of many yarns
 – down to the molecular level and beyond

Purchase a CD on the Web

• the “top level” system includes
 – your browser, your desktop computer
 – connection to the internet (ISP)
 – server application code
 • method="POST"
 • action="/exec/hbds/handle-buy-box=B00005NFZB/..."
 • ...

Write a resume using Word

• the “top level” system includes
 – winword.exe - the application program
 – Contemporary Resume.dot - document template
 – resume.doc - the file containing the text
 – Windows Explorer - file manager
 – network file and printer sharing

Write assembly language for matrix operations

• the “top level” system includes
 – programmer’s editor (eg, Context)
 – assembler - convert source to machine language
 – linker, loader - build and run executable
 – Instruction Set Architecture (ISA) that you are writing the code for
 • defines the programmer-visible face of the CPU
 • in this class, we will be writing for MIPS 1 ISA

Layers of abstraction

• Abstraction
 – isolates a layer from changes in the layer below
 – improves developer productivity by reducing detail needed to accomplish a task
 – helps define a single architecture that can be implemented with more than one organization

Architecture and Organization

• Architecture
 – defines elements and interfaces between layers
 – ISA: instructions, registers, addressing
• Organization
 – components and connections
 – how instructions are implemented in hardware
 – many different organizations can implement a single architecture
Computer Architecture

- Specification of how to program a specific computer family
 - what instructions are available?
 - how are the instructions formatted into bits?
 - how many registers and what is their function?
 - how is memory addressed?
- The MIPS I architecture is the basis for the first half of this course

Architecture Families

- IBM 360, 370, …
- PowerPC 601, 603, …
- DEC PDP-11
- Intel x86 286, 386, 486, Pentium, …
- Motorola 680x0
- MIPS R2000, R3000, R4000, R5000, …

Computer Organization

- Processor
 - datapath (functional units) manipulate the bits
 - control controls the manipulation
- Memory
 - cache memory - smaller, higher speed
 - main memory - larger, slower speed
- Input / Output
 - interface to the rest of the world

Organizations and Architectures

- Architecture is another abstraction layer
- One architecture can be implemented with many organizations
- One organization can support multiple architectures
- Different manufacturing technologies
 - TTL, ECL, PMOS, NMOS, CMOS
 - ropes and pulleys - see Dewdney reference

Many possible implementations

A typical organization
Change Organization or Architecture?

- **Theory**
 - Organization changes provide incremental changes in speed and cost for same software
 - Architecture changes enable breakthrough changes in speed and cost for new software
- **Real life**
 - incremental changes are very rapid
 - breakthrough changes are very costly

A quick hardware tour

- **System board**
 - CPU, memory, I/O bus
- **Hard disk**
 - 3600+ RPM, 8ms latency, 3-15 ms seek
- **Monitor**
 - CRT, LCD
- **Mouse, keyboard**
 - embedded processors

Reading and References

- **Reading**
 - Chapter 1, Patterson and Hennessy, *Computer Organization & Design*

- **Other References**