CSE 410 - Computer Systems
Autumn 2001

http://www.cs.washington.edu/410
Administrative

• Instructor:
 – Doug Johnson
 – djohnson@cs.washington.edu

• All class info is on the web site
 – also known as
 • http://www.cs.washington.edu/education/courses/cse410/01au/
Class Overview

• Provide an introduction to the inner workings of computer systems

• Levels of abstraction
 – bits, bytes, assembly language
 – operating system concepts
 – higher level languages - C, C++, Java, …
 – application programs
Goal

• You will understand
 – what is actually happening when a computer system is running application programs

• So that you will be able to
 – make good design choices as a developer, project manager, or system customer

• In other words ...
 – calibrate your hype-o-meter with facts
The structure of this class

• The hardware / software interface
 – the elements of a computer system
 – what parts are visible to the software
 – instruction set architecture (ISA)

• Operating systems
 – services an OS performs for an application
 – design of various OS components
Elements of a computer system

• Start with a point of view
 – purchase a CD on the Web
 – get class schedule from MyUW
 – write a resume using Word
 – write a Java program to do image processing
 – write a C program to read real time data
 – write assembly language for matrix operations
 – write microcode for instruction emulation
“Top Level” elements

• At any level of abstraction, there are
 – elements at that level
 – the building blocks for those elements
• Rope analogy in the book
 – a cable: three hawsers twisted together
 – a hawser: three strands of many yarns
 – down to the molecular level and beyond
Purchase a CD on the Web

- the “top level” system includes
 - your browser, your desktop computer
 - connection to the internet (ISP)
 - server - http://www.amazon.com/
 - server application code
 - method="POST"
 - action="/exec/obidos/handle-buy-box=B00005NFZB/…"
 - ...

Write a resume using Word

• the “top level” system includes
 – winword.exe - the application program
 – Contemporary Resume.dot - document template
 – resume.doc - the file containing the text
 – Windows Explorer - file manager
 – network file and printer sharing
Write assembly language for matrix operations

• the “top level” system includes
 – programmer’s editor (eg, Context)
 – assembler - convert source to machine language
 – linker, loader - build and run executable
 – Instruction Set Architecture (ISA) that you are writing the code for
 • defines the programmer-visible face of the CPU
 • in this class, we will be writing for MIPS 1 ISA
Layers of abstraction

- Abstraction
 - isolates a layer from changes in the layer below
 - improves developer productivity by reducing detail needed to accomplish a task
 - helps define a single architecture that can be implemented with more than one organization
Architecture and Organization

• Architecture
 – defines elements and interfaces between layers
 – ISA: instructions, registers, addressing

• Organization
 – components and connections
 – how instructions are implemented in hardware
 – many different organizations can implement a single architecture
Computer Architecture

• Specification of how to program a specific computer family
 – what instructions are available?
 – how are the instructions formatted into bits?
 – how many registers and what is their function?
 – how is memory addressed?

• The MIPS 1 architecture is the basis for the first half of this course
Architecture Families

- IBM 360, 370, …
- PowerPC 601, 603, …
- DEC PDP-11
- Intel x86 286, 386, 486, Pentium, …
- Motorola 680x0
- MIPS R2000, R3000, R4000, R5000, …
Computer Organization

• Processor
 – datapath (functional units) manipulate the bits
 – control controls the manipulation

• Memory
 – cache memory - smaller, higher speed
 – main memory - larger, slower speed

• Input / Output
 – interface to the rest of the world
Organizations and Architectures

• Architecture is another abstraction layer
• One architecture can be implemented with many organizations
• One organization can support multiple architectures
• Different manufacturing technologies
 – TTL, ECL, PMOS, NMOS, CMOS
 – ropes and pulleys - see Dewdney reference
Many possible implementations

Figure 2.4 The Apraphulian AND gate.
A typical organization

- main memory
- level 2 cache
- level 1 cache
- control
- functional units
- registers
- PC
- I/O bus
- hard disk
- floppy disk
- CDROM drive
- serial ports
- network interface
Change Organization or Architecture?

• Theory
 – Organization changes provide incremental changes in speed and cost for same software
 – Architecture changes enable breakthrough changes in speed and cost for new software

• Real life
 – incremental changes are very rapid
 – breakthrough changes are very costly
A quick hardware tour

• System board
 – CPU, memory, I/O bus

• Hard disk
 – 3600+ RPM, 8ms latency, 3-15 ms seek

• Monitor
 – CRT, LCD

• Mouse, keyboard
 – embedded processors
Reading and References

• Reading
 – Chapter 1, Patterson and Hennessy, Computer Organization & Design

• Other References