
University of Washington
CSE 403 Software Engineering

Winter 2016

Final Exam
Monday, March 14, 2016

Name:

CSE Net ID (username):

UW Net ID (username):

This exam is closed book, closed notes, closed neighbor. You have
110 minutes to complete it. The exam contains 8 pages (including
this cover page) and 10 problems.

Before you start, please check your copy to make sure it is complete.
Turn in all pages, together, when you are finished. Write your
initials on the top of all pages, in case a page gets separated
during test-taking or grading.

When you are asked for multiple answers, give answers that are as
different as possible, and give the most important answers.

Please write neatly; we cannot give credit for what we cannot
read.

Good luck!

Problem Points Score

1 8

2 4

3 16

4 4

5 22

6 12

7 10

8 8

9 6

10 10

Total: 100

Initials: Page 2 Software Architecture

1 Software Architecture

1. (8 points) List and briefly explain the criteria for evaluating a software architecture.

(a)

(b)

(c)

(d)

2. (4 points) Does the following diagram describe a pipe-and-filter architecture? Why or why not?

scan parse

optimize

codegenanalyze

typecheck

Initials: Page 3 Design Patterns

2 Design Patterns

Ben Bittwiddle wrote the obfuscated Java code in Figure 1 to prevent others from understanding his
design. But despite his efforts, it is clear that he used three design patterns we discussed in class.

public interface I1 {
public I2 method1();

}

public interface I2 {
public void method2(I3 i3);

}

public interface I3 {
public void method3();

}

public final class C1 implements I1 {
private static C1 c1 = new C1();
private C1() {}

public static C1 method4() { return c1; }

public I2 method1() { return new C2(); }

private static class C2 implements I2 {

C2() {}

public void method2(I3 i3) {
i3.method3();

}
}

}

public class C3 implements I3 {
private final String s;

public C3(String s) {
this.s = s;

}

public void method3() {
System.out.print(s);

}
}

public class C4 implements I3 {
private final I3 i3;

public C4(I3 i3) {
this.i3 = i3;

}

public void method3() {
System.out.print("***");
i3.method3();

}
}

public class Main {
public static final void main(String[] args) {
final I3 x1 = new C4(new C3("*"));
final I2 x2 = C1.method4().method1();
for(int i = 0; i < 100; i++) {
x2.method2(x1);

}
x2.method2(new C4(new C3("")));

}
}

Figure 1: Ben’s code. Assume that all of the shown interfaces and classes are in the same package.

Initials: Page 4 Design Patterns

3. (16 points) Which three patterns did Ben use and how? Provide your answer below by filling the circle
in the row r and column c if and only if Ben used the pattern in the row r, and the class or interface
in the column c participates in that pattern. The same class or interface may participate in multiple
patterns. You get to fill in eight circles, with each correct choice earning 2 points. No credit will be
given if more than eight circles are filled.

I1 I2 I3 C1 C2 C3 C4
Template Method i i i i i i i
Factory Method i i i i i i i
Singleton i i i i i i i
Null Object i i i i i i i
Abstract Factory i i i i i i i
Decorator i i i i i i i
Composite i i i i i i i

4. (4 points) What is the output of the main method of the Main class?

Initials: Page 5 UML Diagrams

3 UML Diagrams

Consider implementing a set of integers using a binary search tree. Below is an incomplete UML diagram
that describes such an implementation.

TreeSet

IntegerNode

root

keychildren

5. (22 points) Which of the following constraints can be expressed using multiplicities? Mark your answers
by circling T (true) for those that can and F (false) for those that cannot.

(a) T / F The tree of Nodes is acyclic.

(b) T / F A TreeSet can be empty.

(c) T / F A Node can have no children.

(d) T / F A Node can have one child.

(e) T / F A Node can have at most two children.

(f) T / F The tree of Nodes is balanced, so that the path from the root Node to the farthest leaf is no
more than twice as long as the path from the root Node to the nearest leaf.

(g) T / F Nodes are not shared among TreeSets.

(h) T / F An Integer may appear in any number of TreeSets.

(i) T / F Each Node has exactly one key.

(j) T / F Subtrees are not shared within the Node tree.

(k) T / F A TreeSet has no more than one root Node.

6. (12 points) Add multiplicity annotations to the TreeSet diagram so that it expresses all of the constraints
you marked as true (T) in the previous question.

Initials: Page 6 Testing

4 Testing

Ben Bittwiddle just joined a startup that builds electronic voting machines for the upcoming presidential
elections. His first programming task is to implement an efficient algorithm for determining which
candidate received the majority of votes. Luckily, Ben remembers hearing once about the Boyer-Moore
majority-vote algorithm, which runs in linear time and constant space. He looks it up on Wikipedia and
finds the Java implementation shown in Figure 2.
Being a good engineer, Ben wants to test the implementation before deploying it. In particular, he wants
to make sure that the implementation satisfies the specification shown in Figure 2. But Ben forgot his
laptop charger at home, and his battery is down to 2%! The following two questions ask you to save the
day (and the democratic process) by helping Ben test his code with minimal computing resources.

7. (10 points) To make the most of his resources, Ben devises a way to compare the sizes of two test suites
for the majorityElement method. First, he defines a helper procedure packArray(a) that takes as input
an array of positive integers and concatenates all of its elements into a single integer. For example,
packArray([5, 3, 4]) returns 534. Next, he defines a helper procedure packArrays(T) that takes as input a
list T of integer arrays, packs each element of T into an integer using packArray, sorts the resulting integers,
and then packs those into a single integer using packArray. For example, packArrays({[5, 3], [4], [1, 6]})
returns 41653. Using packArrays, Ben can now say that a test suite T1, expressed as a list of integer
arrays, is smaller than a test suite T2 if and only if packArrays(T1) < packArrays(T2).
Using Ben’s definition of test suite size, write down a minimal test suite for the majorityElement
method that achieves full statement coverage and that exercises all specification outcomes (i.e., a positive
and a negative output). In particular, your test suite T should be satisfy both of these criteria, and there
should be no test suite T ′ that also satisfies these criteria while being strictly smaller than T . For each
test input in T , write down the expected output.

8. (8 points) Running your test suite, Ben discovers an error! The implementation returns a wrong result.
(a) Briefly explain which test case fails and why. That is, state which line of code in Figure 2 is faulty.

(b) Write a fix for the faulty line of code.

Initials: Page 7 Testing

1 public class MajorityVote {
2 /**
3 * Given an array of n positive integers, this method returns the element k,
4 * if one exists, that is stored at more than bn/2c indices of the array.
5 * If no such integer exists, the method returns −1.
6 **/
7 public int majorityElement(int[] num) {
8 int n = num.length;
9 int candidate = num[0], counter = 0;

10 for (int i : num) {
11 if (counter == 0) {
12 candidate = i;
13 counter = 1;
14 } else if (candidate == i) {
15 counter++;
16 } else {
17 counter--;
18 }
19 }
20 counter = 0;
21 for (int i : num) {
22 if (i == candidate) counter++;
23 }
24 if (counter < (n + 1) / 2) return -1;
25 return candidate;
26 }
27 }

Figure 2: A Java implementation of the Boyer-Moore majority voting algorithm, as published on Wikipedia
(March 03, 2016).

Initials: Page 8 Static Analysis and Symbolic Execution

5 Static Analysis and Symbolic Execution

9. (6 points) Finish the implementations of static analysis tools sketched in Figure 3 so that
(a) ToolA is sound for all Java programs p and all properties s.
(b) ToolB is complete for all Java programs p and all properties s.
(c) ToolC is neither sound nor complete for all Java programs p and all properties s.

public class ToolA {

public static boolean analyze(Program p, Property s) {

}
}

public class ToolB {

public static boolean analyze(Program p, Property s) {

}
}

public class ToolC {

public static boolean analyze(Program p, Property s) {

}
}

Figure 3: A sketch of three static analysis tools, to be filled in so that ToolA is sound, ToolB is complete, and
ToolC is neither. A tool should return true if the input program satisfies the property, and false otherwise.
The types Program and Property represent the program and the property being analyzed.

10. (10 points) Assume that Ben has applied your patch to the majorityElement method in Figure 2. What
feasible path conditions are generated by symbolically executing the resulting code on the array [X,Y],
where X and Y are symbolic integer values? For each such path condition, write down a simplified formula
that omits trivial constraints (e.g., ‘true‘), as well as the return value of the patched majorityElement
method.

	Software Architecture
	Design Patterns
	UML Diagrams
	Testing
	Static Analysis and Symbolic Execution

