CSE 403
Lecture B

Version Control

Thanks to Michael Ernst, Marty Stepp, and other past instructors of CSE 403
http://www.cs.washington.edu/403/

Goals of a version control system

e Keep a history of your work
— Explain the purpose of each change
— Checkpoint specific versions (known good state)
— Recover specific state (fix bugs, test old versions)

e Coordinate/merge work between team members (or
yourself, on multiple computers)

Varieties of version control system

Centralized VCS

Database
(history)

6\\‘ compile, ...
S A8 \V/
N

Distributed VCS

e
) Q

Edit,

D

Working
copy

Working
copy

Working
copy

e One repository
e Many working copies

|

/

commit / update

Working copy

Working
copy

Working
copy

e Many repositories

e One working copy per repository
(More complicated topologies are possible)

Version control history

Reality
#1 (original)

#2 by A

#3 by B
#4 by A
#5by A

#6 by B

Centralized VCS
(one of the following)

#1 (original)

|
#2 by A

#4 by A

#5by A

#3 by B

#6 by B

Rewrites history
One commit per developer

#1 (original)

|
#3 by B

#6 by B

#2 by A

#4 by A

#5by A

Distributed VCS

#1 (original)

#szA/\

#4 by A

#5 by A

#3 by B

vby B

#7: merge

Preserves history
Multiple commits, one
push per developer

DVCS history

Working copy can be
updated to any revision
in the history

#1 (original)

#Zb‘(\

#3 by B

#4 by A

/1

/,

#5 by A

#8 by C

#6 by B

#7: merge

#9: merge

Normal commit;
edits files

Also a commit;
only merges differences

(if any)

Advantages of a DVCS

e checkpoint work without publishing to teammates
e share changes selectively with teammates

e commit, examine history when not connected to the
network

e more accurate history

e more effective merging algorithms

o flexibility in repository organization and workflow
o faster performance

A DVCS prohibits some operations

e No update if uncommitted changes exist
— must commit first

e No push if not ahead of remote
— must pull & merge first

e No partial update (e.g., updating just one directory)
— update gets all changes in a changeset (= a commit)

e Rationale:
— Maintain more accurate, complete history
— Keep all users in sync
— Avoid painful conflicts
— Avoid loss of work

Coordinating with others

e pull incorporates others’ changes

e If you are behind, nothing more to do
— Behind = your history is a prefix of master history

e If you have made changes in parallel, you must merge
— Merge = create a new version incorporating all changes

Two types of merges

o Conflict-free
— Changes are to different files or different lines of a file

— “Conflict-free” is a textual, not semantic, notion: could yield
compile errors or test failures

e Conflicting
— Simultaneous changes to the same lines of a file
— Requires manual conflict resolution

Resolving conflicts

e There are three versions of the file: ancestor
e You decide which version to keep /\

or how to merge them my remote
e Many merge tools exist changes | | changes

e Configure your DVCS to use the merge tool that you prefer

e Don't panic! Instead, think.

e You can always bail out of the merge and start over again
(because you have the full local and remote history)

10

Popular DVCSes

e Mercurial (hg)
o Git (git)
e Others: Bazaar, DARCS, ...

o Essentially identical functionality

e Mercurial has a better-designed command set
— more logical, easier to learn and use, errors are less likely

e Git is faster on huge projects
— you won't notice a difference on your project

e Git is more popular

11

e Never use hg pull; instead, use hg fetch
— Does: hg pull; hg update
— Does if necessary: hg merge; hg commit

e To use Mercurial just like SVN:
— svn update = hg fetch

— svn commit = hg commit; hg push

12

Binary files are not diff-able

e The history database records changes, not the entire file every
time you commit

— The diff algorithm works line-by-line

e Do not commit generated files
— Binaries (e.q., .class files), etc.
— Wastes space in repository
— Causes merge conflicts

e Avoid binary files (especially simultaneous editing)
— Word .doc files, for example

13

e Make many small commits, not one big one
e Easier to understand, review, merge, revert

e How to make many small commits:

— Do only one task at a time
e commit after each one

— Do multiple tasks in one clone
e Commit only a subset of files
e Error-prone

— Create a new clone for each simultaneous task
e Can have as many as you like

— Create a “"branch” for each simultaneous task
e Somewhat more efficient
e Somewhat more complicated and error-prone

14

Synchronize with teammates often

e Fetch often
— Avoid getting behind the master or your teammates

e Push as often as practical
— Don't destabilize the master build
— Automatic testing on each push is a good idea

15

More ways to avoid merge conflicts

e Modularize your work
— Divide work so that individuals or subteams “own” a module
— Other team members only need to understand its specification
— Requires good documentation and testing

e Communicate about changes that may conflict
— But don’t overwhelm the team in such messages

16

