
CSE 403
Lecture B

Version Control

Thanks to Michael Ernst, Marty Stepp, and other past instructors of CSE 403
http://www.cs.washington.edu/403/

2

Goals of a version control system

• Keep a history of your work
–  Explain the purpose of each change
–  Checkpoint specific versions (known good state)
–  Recover specific state (fix bugs, test old versions)

• Coordinate/merge work between team members (or
yourself, on multiple computers)

3

•  One repository
•  Many working copies

Database
(history)

Varieties of version control system

•  Many repositories
•  One working copy per repository
(More complicated topologies are possible)

Centralized VCS Distributed VCS

Repository

Working
copy

Working
copy

Working
copy

Repository

Working copy
Working

copy
Working

copy

Repository Repository Repository

commit update

Edit,
compile, …

4

Distributed VCS

•  Preserves history
•  Multiple commits, one

push per developer

Centralized VCS
(one of the following)

•  Rewrites history
•  One commit per developer

Reality

Version control history

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#7: merge

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

5

DVCS history

#1 (original)

#2 by A

#3 by B

#5 by A

#6 by B

#4 by A

#7: merge

Normal commit;
edits files

Also a commit;
only merges differences

(if any) Working copy can be
updated to any revision
in the history

#8 by C

#9: merge

6

Advantages of a DVCS

• checkpoint work without publishing to teammates
• share changes selectively with teammates
• commit, examine history when not connected to the

network
• more accurate history
• more effective merging algorithms
• flexibility in repository organization and workflow
• faster performance

7

A DVCS prohibits some operations

• No update if uncommitted changes exist
–  must commit first

• No push if not ahead of remote
–  must pull & merge first

• No partial update (e.g., updating just one directory)
–  update gets all changes in a changeset (= a commit)

• Rationale:
–  Maintain more accurate, complete history
–  Keep all users in sync
–  Avoid painful conflicts
–  Avoid loss of work

8

Coordinating with others

• pull incorporates others’ changes

•  If you are behind, nothing more to do
–  Behind = your history is a prefix of master history

•  If you have made changes in parallel, you must merge
–  Merge = create a new version incorporating all changes

9

Two types of merges

• Conflict-free
–  Changes are to different files or different lines of a file
–  “Conflict-free” is a textual, not semantic, notion: could yield

compile errors or test failures

• Conflicting
–  Simultaneous changes to the same lines of a file
–  Requires manual conflict resolution

10

Resolving conflicts

• There are three versions of the file:
• You decide which version to keep

or how to merge them
• Many merge tools exist
• Configure your DVCS to use the merge tool that you prefer

• Don’t panic! Instead, think.
• You can always bail out of the merge and start over again

(because you have the full local and remote history)

ancestor

my
changes

remote
changes

11

Popular DVCSes

• Mercurial (hg)
• Git (git)
• Others: Bazaar, DARCS, …

• Essentially identical functionality
• Mercurial has a better-designed command set

–  more logical, easier to learn and use, errors are less likely

• Git is faster on huge projects
–  you won’t notice a difference on your project

• Git is more popular

12

Hints

• Never use hg pull; instead, use hg fetch
–  Does: hg pull; hg update
–  Does if necessary: hg merge; hg commit

• To use Mercurial just like SVN:
–  svn update = hg fetch
–  svn commit = hg commit; hg push

13

Binary files are not diff-able

• The history database records changes, not the entire file every
time you commit
–  The diff algorithm works line-by-line

• Do not commit generated files
–  Binaries (e.g., .class files), etc.
–  Wastes space in repository
–  Causes merge conflicts

• Avoid binary files (especially simultaneous editing)
–  Word .doc files, for example

14

Commit often

• Make many small commits, not one big one
• Easier to understand, review, merge, revert
• How to make many small commits:

–  Do only one task at a time
• commit after each one

–  Do multiple tasks in one clone
• Commit only a subset of files
• Error-prone

–  Create a new clone for each simultaneous task
• Can have as many as you like

–  Create a “branch” for each simultaneous task
• Somewhat more efficient
• Somewhat more complicated and error-prone

15

Synchronize with teammates often

•  Fetch often
–  Avoid getting behind the master or your teammates

•  Push as often as practical
–  Don’t destabilize the master build
–  Automatic testing on each push is a good idea

16

More ways to avoid merge conflicts

• Modularize your work
–  Divide work so that individuals or subteams “own” a module
–  Other team members only need to understand its specification
–  Requires good documentation and testing

• Communicate about changes that may conflict
–  But don’t overwhelm the team in such messages

