CSE403 Spring 2010 Midterm Examination
April 30, 2010

- 50 minutes.
- Open notes, open book.
- Closed any kind of electronics (including calculators and cell phones)
- Closed neighbor.
- Better legibility makes for happier graders.
- Make sure your name is on at least the first page

<table>
<thead>
<tr>
<th></th>
<th>Maximum Points</th>
<th>Earned Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Q2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Q3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Q4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Q5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Q6</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
Q1 [10 points] A common way to distinguish requirements from design (or implementation) is to characterize requirements as “the what” and design as “the how.” Concisely give one reason why this characterization is insufficient.

Q2 [10 points] Consider the two projects for the course: the co-authorship tool and the clone detection tool. Which of the projects would be a better match to a waterfall lifecycle model? Briefly justify your answer.
Q3 [15 points] Consider the following element from a conventional Microsoft text formatting box. Briefly identify a weakness of the interface, particularly focusing on the degree to which the effects are or are not independent of each other. Recommend a way to overcome the weakness.

<table>
<thead>
<tr>
<th>Effects</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strikethrough</td>
<td>Shadow</td>
<td>Small caps</td>
</tr>
<tr>
<td>Double strikethrough</td>
<td>Outline</td>
<td>All caps</td>
</tr>
<tr>
<td>Superscript</td>
<td>Emboss</td>
<td>Hidden</td>
</tr>
<tr>
<td>Subscript</td>
<td>Engrave</td>
<td></td>
</tr>
</tbody>
</table>
Q4 [10 points] Consider the following Java code

```java
public class Money {
    private double m_amount;
    private String m_currency_type; // "USDollar", "Euro", etc.

    public Money(double amount) {
        m_amount = amount;
        m_currency_type = Globals.getCurrencyType();
    }

    public double getAmount() {
        return m_amount;
    }

    public String getCurrencyType() {
        return m_currency_type;
    }
}
```

What design decisions (specifically, representations of data) — if any — are encapsulated by the `Money` class? That is, what decisions could be changed without causing the clients of the class to be modified?
Q5 [20 points] Consider the following dependency diagram that includes this `Money` class (ignore `BankException`):

![Dependency Diagram]

Briefly, the diagram says that:

- The `Bank` class creates new `BankAccount` instances, which can in turn return their status to `Bank` instances.
- The `BankAccount` class creates new instances of `Money`, includes instances of `Money`, and passes instance of `Money` as parameters.
- The `BankAccount` class includes instances of `USDollarsManipulator` and performs casts to `USDollarsManipulator` on values returned from `USDollarsManipulator`.

I claim that this design makes it difficult to change `BankAccount` to allow instances to manage multiple currencies (say, `USDollars` and `Euros`).

Either: (a) argue concisely that my claim is inaccurate; or (b) sketch a different structure that would make it easier to apply this change.
Q6 [15 points total, 5 points each]

1. True or false: When a subclass inherits from a superclass, no additional coupling is created in the design. Briefly justify your answer (1-2 sentences).

2. True or false: Using a formal logic cannot overcome all problems in software requirements specification. Briefly justify your answer (1-2 sentences).

3. True or false: There is a close relationship between use cases and UML sequence diagrams. Briefly justify your answer (1-2 sentences).