Software Testing

Theory and Practicalities

Purpose

To find bugs

To enable and respond to change

To understand and monitor performance
To verify conformance with specifications

To understand the functionality of code

Why Study Testing

® Testing is an integral part of professional
software engineering

® Know how, when and why to apply testing
techniques

Classifying Testing

® There are many testing techniques -- a
taxonomy is useful

® White box vs. Black box

® Automated vs. Manual

White vs. Black Box

How deeply do you look at the
implementation of the system?

Black box: do not want to look at
implementation

“Grey” box - understands assumptions and
limitations of system

White box: full knowledge of code,
deliberate use of implementation choices

Automated vs. Manual

® Automated:“make test”
® Manual “poke poke poke”

® Semi-automated: configure, setup, test,
evaluate, retest

Test Techniques

Regression

GUI

: Performance Integration Conformance
Automation

Smoke

Security

Functional
Usability

BB \A% =

Understanding

Where to Apply These

® Roughly, the “lower” the level of the
component, the more amenable to
automation

® Higher level components often require
significant “scaffolding” to test effectively

® Complete functional coverage of a GUI
application can be very resource intensive

Unit Tests

Ensure completeness and correctness of
implementation

Cover all public APIs and significant internal
APls

Begin writing tests as soon as basic
structure and some APIs are known

Regression tests: bugs as a source of test

Unit Tests

® Use or create your own infrastructure to
make writing unit tests trivial.

® (Goal:“make test” yields true or false

Unit Tests (Example |)

... main part of module

import unittest
class TestURLCanonicalization(unittest.TestCase):

def test basic(self):
u = URL("http://www.example.com")
self.assertTrue(u.scheme == "http")
self.assertTrue(u.host == "www.example.com")
self.assertTrue(u.port == 80)
self.assertTrue(u.path == "/")
self.assertTrue(u.params == "")
(
(

self.assertTrue .fragment == "")
self.assertTrue .url == "http://www.example.com/")

n n -

if name == " main
unittest.main()

Unit Tests (Example 2)

... main part of module

import unittest
class TestURLCanonicalization(unittest.TestCase):

def test nonascii escaped fragment(self):

u = URL(”http://www.facebook.com/?ref=home#!/paqes/Tﬂiﬁﬂﬁiﬁﬁﬁﬁuiﬁﬂiﬁgﬁﬁ

9390-UN/1179769749649232sk=wall")
self.assertTrue
self.assertTrue
self.assertTrue
self.assertTrue
self.assertTrue .params == "ref=home& escaped fragment =/pages/...")
self.assertTrue .fragment == "")
self.assertTrue(u.url == "http://www.facebook.com/?

ref=home& escaped fragment =/pages/%$E0%B9%82%EQ0...%81/1179769749649232sk=wall")

u.scheme == "http")
.host == "www.facebook.com")
.port == 80)
.path == "/")

(
(
(
(
(
(

n n °

if name == " main
unittest.main()

APl Testing

A variant of Unit testing

An important component of module
documentation

Added emphasis on edge-cases, exceptional
conditions, parameter verification, abuse

Well defined APIs work well with a test-
first strategy

APl Test Example

This is the "example" module.

momn

The example module supplies one function, factorial(). For example,

>>> factorial(5)
120

momn

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]
[1, l, 2, 6, 24’ 120]"""

import math
if not n >= 0:
raise ValueError("n must be >= 0")

n n °

if name == " main
import doctest
doctest.testmod ()

Complex Integration
and Unit Tests

® Test core application logic

® Often requires setting up test environment

® |nvest in stubs, mocks, and scripted test
scaffolding to automate complex testing

Stubs, Mocks, and
Scaffolding

Stubs: downstream fn that gives a
reasonable response (null, True, ...)

Mock: somewhat intelligent stub. e.g. Must
call fnX before fnY.

Scaffolding: potentially complex test
environment.VMs, DBs, configurations

Stubs and Mocks

® More of a development than testing tool

® Focus development on one component at a
time

® Enable unit and integration tests to be
written

Example Stub

class DummyCache(object):

def lookup(self, key, default value = None):
return default value

def remove(self, key):
pass

def store(self, key, val):
pass

def clear(self):
pass

Test Scaffolding

® Goal:a controlled version of an
approximation of some “real world”

® Automate or die

® Scripting, tooling, system administration
skills are required

Complex example

Scaffolding Env Example

Vagrant::Config.run do |config]|
config.vm.box = "precise64"”
config.vm.provision :chef solo do |chef|

chef.cookbooks path = "cookbooks"
chef.add recipe "mysql"
chef.add recipe "mysqgl::server"

end
config.vm.provision :shell, :path => "./setup.sh"
end

#!/bin/sh

setup test DB

mysql -u root -p password -e “"create database test;GRANT ALL PRIVILEGES
ON test.* TO user@localhost IDENTIFIED BY 'password';FLUSH PRIVILEGES;"”
fetch test data

curl http://example.com/test_data.csv > /tmp/test data.csv

load test data

mysglimport -u root -p password --local test /tmp/test data.csv

make test

cd tests/vagrant
vagrant up

cd ../tests/integration
python test.py

High-Level GUI
Automation Testing

® “Robot’” user - automate the use of the
application

® Understand what you are testing

® Can be useful, but may be brittle

Selenium Example

from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.ui import WebDriverWait

driver = webdriver.Firefox()
driver.get("http://www.google.com")
inputElement = driver.find element by name("q")
inputElement.send keys("Cheese!")
inputElement.submit ()

try:
wait for the page to refresh
WebDriverWait(driver, 10).until(lambda driver
driver.title.lower().startswith("cheese!"))

make assertions about the context of the page here...
finally:
driver.quit()

Functional Testing

® Humans (finally!)
® Written scripts and checklists

® | evels of detail: smoke, iteration, alpha,
beta, release acceptance

Often Ignored

® | ogs
® |nternationalization

® Stubbed exception handling

Summary

® Some testing is the developer’s
responsibility

® Automation makes powerful testing
relatively simple

