
1

Refactoring

CSE 403

2

Problem: "Bit rot"

• After several months and new versions, many
codebases reach one of the following states:
– rewritten: Nothing remains from the original code.

– abandoned: The original code is thrown out and rewritten
from scratch.

…even if the code was initially reviewed and well-designed at
the time of checkin, and even if checkins are reviewed

• Why is this?
– Systems evolve to meet new needs and add new features

– If the code's structure does not also evolve, it will "rot"

3

Code maintenance

• maintenance: Modification of a software product
after it has been delivered.

Purposes:

– fix bugs

– improve performance

– improve design

– add features

– ~80% of maintenance is for non-bug-fix-related
activities such as adding functionality (Pigosky 1997)

4

Maintenance is hard

• It's harder to maintain code than write new code.
– must understand code written by another developer,

or code you wrote at a different time with a different mindset

– danger of errors in fragile, poorly-understood code (don't touch
it!)

• Maintenance is how devs spend most of their time
– Many developers hate code maintenance. Why?

• With good design and advance planning, maintenance is
less painful
– Capacity for future change must be anticipated

5

Refactoring

• refactoring: Improving a piece of software's
internal structure without altering its external
behavior.
– Incurs a short-term time/work cost to reap long-term

benefits

– A long-term investment in the overall quality of your
system.

• refactoring is not the same thing as:
– rewriting code

– adding features

– debugging code

Refactoring examples

7

Why refactor?

Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

1. to execute its functionality,

2. to allow change,

3. to communicate well to developers who read it.

If the code does not do one or more of these, it is

broken.

• Refactoring improves software's design
– more extensible, flexible, understandable,

performant, …

– Every design improvement has costs (and risks)

Code “smells”:

Signs you should refactor

• Duplicated code

• Poor abstrac<on (change one place → must change others)

• Large loop, method, class, parameter list; deeply nested
loop

• Module has too little cohesion

• Modules have too much coupling

• Module has poor encapsulation

• A "middle man" object doesn't do much
a “weak subclass” doesn’t use inherited functionality
a “data class” has little functionality

• Dead code

• Design is unnecessarily general

• Design is too specific

9

Low-level refactoring

Names:

• Renaming (methods, variables)

• Naming (extracting) "magic" constants

Procedures:

• Extracting code into a method

• Extracting common functionality (including duplicate code) into a
module/method/etc.

• Inlining a method/procedure

• Changing method signatures

Reordering:

• Splitting one method into several to improve cohesion and readability (by
reducing its size)

• Putting statements that semantically belong together near each other

– See also http://www.refactoring.org/catalog/

10

IDE support for refactoring

• Eclipse / Visual Studio support:

– variable / method / class renaming

– method or constant extraction

– extraction of redundant code snippets

– method signature change

– extraction of an interface from a type

– method inlining

– providing warnings about method
invocations with inconsistent parameters

– help with self-documenting code
through auto-completion

Higher-level refactoring

• Refactoring to design patterns

• Exchanging risky language idioms with safer
alternatives

• Performance optimization

• Clarifying a statement that has evolved over time
or is unclear

• Compared to low-level refactoring, high-level is:
– Not as well-supported by tools

– Much more important!

11

12

Refactoring plan?

• When you identify an area of your system that:

– is poorly designed

– is poorly tested, but seems to work so far

– now needs new features

• What should you do?

– Let’s assume that you have adequate time to "do things

right."

(Not always a valid assumption in software...)

13

Recommended refactor plan

• When you identify an area of your system that:
– is poorly designed

– is poorly tested, but seems to work so far

– now needs new features

• What should you do?
– Write unit tests that verify the code's external correctness.

• (They should pass on the current, badly designed code.)

– Refactor the code.
• (Some unit tests may break. Fix the bugs.)

– Add the new features.

– As always, keep changes small, do code reviews, etc.

14

"I don't have time to refactor!"

• Refactoring incurs an up-front cost.
– some developers don't want to do it

– most management don't like it, because they lose time and gain
"nothing" (no new features)

• However...
– well-written code is much more conducive to rapid development

(some estimates put ROI at 500% or more for well-done code)

– finishing refactoring increases programmer morale
• developers prefer working in a "clean house"

• When to refactor?
– best done continuously (like testing) as part of the SE process

– hard to do well late in a project (like testing)
• Why?

15

Should startups refactor?

• Many small companies and startups skip refactoring.
– "We're too small to need it!"

– "We can't afford it!"

• Reality:
– Refactoring is an investment in quality of the company's

product and code base, often their prime assets

– Many web startups are using the most cutting-edge
technologies, which evolve rapidly. So should the code

– If a key team member leaves (common in startups), ...

– If a new team member joins (also common), ...

