Software quality assurance

What are we assuring?

- Validation: building right system?
- Verification: building system right?
- Presence of good properties?
- Absence of bad properties?
- Identifying errors?
- Confidence in the absence of errors?

Why are we assuring it?

- Business reasons
- Ethical reasons
- Professional reasons
- Personal satisfaction
- Legal reasons
- Social reasons
- Economic reasons
- …

How do we assure it?

How do we know we have assured it?

- Depends on “it”
- Depends on what we mean by “assurance”
- …
Our focus

- Primarily on the product – testing, verification, etc.
 - And primarily on “built the system right?”
- Some on the process – walkthroughs, code reviews, etc.

Foundation: program correctness

- Relatively few programs are proven correct
 - Hard, expensive, and usually uni-dimensional
- The language and “way of thinking” is important, and many recent testing and anomaly checking technologies are heavily reliant on this foundation

Basics of program correctness

- Make precise the meaning of programs
- In a logic, write down (this is often called the specification)
 - the effect of the computation that the program is required to perform (the postcondition Q)
 - any constraints on the input environment to allow this computation (the precondition P)
- Associate precise (logical) meaning to each construct in the programming language (this is done per-language, not per-program)
- Reason (usually backwards) that the logical conditions are satisfied by the program S
- A Hoare triple is a predicate \{P\}S\{Q\} that is true whenever P holds and the execution of S guarantees that Q holds

Examples

- \{true\}
 \begin{align*}
 \ y := x \times x; \\
 \{y \geq 0\}
 \end{align*}

- \{x \neq 0\}
 \begin{align*}
 \ y := x \times x; \\
 \{y > 0\}
 \end{align*}

- \{x > 0\}
 \begin{align*}
 \ x := x + 1; \\
 \{x > 1\}
 \end{align*}

More examples

- \{x = k\}
 \begin{align*}
 \text{if } (x < 0) x := -x \text{ endif; } \\
 \{?\}
 \end{align*}

- \{?\}
 \begin{align*}
 \ x := 3; \\
 \{x = 8\}
 \end{align*}

Strongest postconditions

[example from Alechin and perhaps from Leino]

The following are all valid Hoare triples

- \{x = 5\} x := x * 2 \{true\}
- \{x = 5\} x := x * 2 \{x > 0\}
- \{x = 5\} x := x * 2 \{x = 10 || x = 5\}
- \{x = 5\} x := x * 2 \{x = 10\}

- Which is the most useful, interesting, valuable? Why?
Weakest preconditions
[example from Aldrich and perhaps from Leino]

Here are a number of valid Hoare Triples

• \(\{ x = 5 \land y = 10 \} \ x := x / y \ { z < 1 \} \)
• \(\{ x < y \land y > 0 \} \ x := x / y \ { z < 1 \} \)
• \(\{ y \neq 0 \land x / y < 1 \} \ x := x / y \ { z < 1 \} \)

• The last one is the most useful because it allows us to invoke the program in the most general condition
• It is called the weakest precondition, wp(S,Q) of S with respect to Q
 – if \(\{ P \} \ S \ { Q \} \) and for all \(P' \) such that \(P' \Rightarrow P \), then \(P \) is \(wp(S,Q) \)

Sequential execution

• What if there are multiple statements
 – \(\{ P \} \ S1:S2 \ { Q \} \)
• We create an intermediate assertion
 – \(\{ P \} \ S1 \ { A \} \ S2 \ { Q \} \)
• We reason (usually) backwards to prove the Hoare Triples
• A formalization of this approach essential defines the ; operator in most programming languages

Conditional execution

\[\begin{align*}
\{ P \} & \quad \text{if } C \text{ then } S1 \text{ else } S2 \ { Q } \\
\{ \text{true} \} & \quad \text{if } x \geq y \text{ then } \\
\{ \text{else} \} & \quad \text{max := } x \\
\{ \text{fi} \} & \quad \text{max := } y \\
\{ (\max \geq x \land \max \geq y) \} & \\
\end{align*} \]

Hoare logic rule: conditional

\[\{ P \} \text{ if } C \text{ then } S1 \text{ else } S2 \ { Q } = \{ P \land C \} S1 \{ Q \} \land \{ P \land \neg C \} S2 \{ Q \} \]

Be careful!

• \(\{ \text{true} \} \) max := abs(x)+abs(y); \{ max \geq x \land \max \geq y \} \\
• This predicate holds, but we don’t “want” it to
 – The postcondition is written in a way that permits satisfying programs that don’t compute the maximum
 – In essence, every specification is satisfied by an infinite number of programs and vice versa
• The “right” postcondition is
 – \(\{ (\max = x \lor \max = y) \land (\max \geq x \land \max \geq y) \} \)

Assignment statements

• We’ve been highly informal in dealing with assignment statements
• What does the statement \(x := E \) mean?
 – \(\{ Q(E) \} \ x := E \ { Q(x) } \)
 – If we know something to be true about \(E \) before the assignment, then we know it to be true about \(x \) after the assignment (assuming no side-effects)
Examples

\{ y > 0 \}
\begin{align*}
& x := y \\
& \{ x > 0 \}
\end{align*}

\{ x > 0 \} \quad \{ Q(E) = x + 1 \geq 1 \Rightarrow x > 0 \}
\begin{align*}
& x := x + 1; \\
& \{ x > 1 \}
\end{align*}

More examples

\{ ? \}
\begin{align*}
& x := y + 5 \\
& \{ x > 0 \}
\end{align*}

\{ x = A \land y = B \}
\begin{align*}
& t := x; \\
& x := y; \\
& y := t \\
& \{ x = B \land y = A \}
\end{align*}

Loops

- \{ P \} \textbf{while} B \textbf{do} S \{ Q \}
- We can try to unroll this into
 - \{ P \land \neg B \} S \{ Q \} \lor
 - \{ P \land B \} S \{ Q \land \neg B \} \lor
 - \{ P \land B \} S \{ Q \land B \} S \{ Q \land \neg B \} \lor ...$
- But we don’t know how far to unroll, since we don’t know how many
 times the loop can execute
- The most common approach to this is to find a loop invariant, which is a
 predicate that
 - is true each time the loop head is reached (on entry and after each
 iteration)
 - and helps us prove the postcondition of the loop
 - it approximates the fixed point of the loop

Loop invariant for \{ P \} \textbf{while} B \textbf{do} S \{ Q \}

- Find I such that
 - P \Rightarrow I
 - (B \land I) S \{ I \}
 - (\neg B \land I) \Rightarrow Q
- Example

\{ n > 0 \}
\begin{align*}
& x := a[1]; \\
& i := 2; \\
& \text{while } i \leq n \text{ do} \\
& \quad \text{if } a[i] > x \text{ then } x := a[i]; \\
& \quad i := i + 1; \\
& \text{end};
\end{align*}
\{ x = \text{max}(a[1],...,a[n]) \}

Termination

- Proofs with loop invariants do not guarantee that the loop
 terminates, only that it does produce the proper postcondition if
 it terminates – this is called weak correctness
- A Hoare triple for which termination has been proven is strongly
 correct
- Proofs of termination are usually performed separately from
 proofs of correctness, and they are usually performed through
 well-founded sets
 - In this example it’s easy, since i is bounded by n, and i
 increases at each iteration
- Historically, the interest has been in proving that a program
 does terminate but many important programs now are intended
 not to terminate

Correctness of data structures

- Primarily due to Hoare; figures from Wulf et al.
- Prove the specifications on the abstract operations (e.g.,
 Pusha)
- Prove the specifications on the concrete operations
 (e.g., Pushc)
- Prove the relation between abstract and concrete
 operations (e.g., R), the
 representation mapping

Example

- \{ \text{full}(S_i) \} \quad \{ \text{full}(R(S_i)) \}
- Pusha(S_i, x) \quad Pushc(S_i, x)
- \{ S_i[<x>] \} \quad \{ R(S_i) = <x> \}
- \{ R(S_i) = <x> \}

2/13/2009
So what?

- It lays a foundation for
 - Thinking about programs more precisely
 - Applying techniques like these in limited, critical situations
 - Development of some modern design, specification and analysis approaches that seem to have value in more situations
 - Basis for many testing and analysis approaches

Testing vs. proving

- Dynamic
 - Builds confidence
 - Can only show the presence of bugs, not their absence
 - Used widely in practice
 - Costly

- Static
 - It's a proof
 - Proofs are human processes that aren't foolproof
 - Applicability is practically limited
 - Extremely costly

Brief (and informal) aside

- Dynamic techniques are unattractive because they are "unsound" — you can believe something is true when it's not
- Static techniques are unattractive because they are often very costly — and they may lead you to confuse the checked property for other desirable properties
- The truth is that they should be considered to be complementary, not competitive

Testing

- In any case, testing is by far the dominant approach to assessing software products

Two kinds of improvements

- One goal is to improve testing to increase the quality of the software that is produced
- Another goal is to reduce the costs of testing while maintaining the current quality of the software that is produced

Terminology

- A failure occurs when a program doesn't satisfy its specification
- A fault occurs when a program's internal state is inconsistent with what is expected (usually an informal notion)
- A defect is the code that leads to a fault (and perhaps to a failure)
- An error is the mistake the programmer made in creating the defect
More terminology

- A test case is a specific set of data that exercises the program
- A test suite is a set of test cases
- Old terminology
 - A test case (suite) fails if it demonstrates a problem
- New terminology
 - A test case (suite) succeeds if it demonstrates a problem

Root cause analysis

- Tries to track a failure to an error
- Identifying errors is important because it can
 - help identify and remove other related defects
 - help a programmer (and perhaps a team) avoid making the same or a similar error again

Kinds of testing

- Unit
- White-box
- Black-box
- Gray-box
- Bottom-up
- Top-down
- Boundary condition
- Syntax-driven
- Big bang
- Integration
- Acceptance
- Stress
- Regression
- Alpha
- Beta
- Fuzz

In groups

- The program reads three integer values. The three values are interpreted as representing the lengths of the sides of a triangle. The program prints a message that states whether the triangle is isosceles, equilateral, or scalene.
- Write a set of test cases that you feel would adequately test this program

In practice

- 13 kinds of errors were found in actual programs
- When highly experienced programmers are given this example, on the average they figure out about half of the kinds of errors

The lucky thirteen...

- Valid scalene triangle
- Valid equilateral triangle
- Valid isosceles triangle
- Three cases that represent valid isosceles triangles in all permutations
- One side is zero
- One side is negative
- 3 positive integers where two sum to the third
- All permutations of the previous case
The remaining ones

- 3 positive integers where two sum to less than the third
- 3 permutations of the previous case
- All sides are zero
- A non-integer side
- An incorrect number of inputs