CSE 403
Wrapup
Where has Mike been when he is not in class?

May 8: Two PhD defenses
 Preventing & eliminating bugs
 Testing via string constraint solving

May 20, 22: Int’l Conf. on Software Engineering
 Automatically generate security exploits
 Convert serial programs to parallel

June 3: JavaOne
 Pluggable type-checking
A few lessons of CSE 403

Modularity
Abstraction
Requirements
Specification
Design
Documentation
Correctness
Teamwork
Divide and conquer: Modularity, abstraction, specs

No one person can understand all of a realistic system
Modularity permits focusing on just one part
Abstraction enables ignoring detail
Specifications (and documentation) formally describe behavior
Reasoning relies on all three to understand/fix errors
 Or to avoid them in the first place
Getting it right ahead of time

Design: predicting implications
Example: understanding interconnections
Understanding the strengths and weaknesses
If you don’t understand a design, you can’t use it
Documentation matters!
Documentation

Everyone wants good documentation when using a system
Not everyone likes writing documentation

Documentation is the most important part of a user interface (in a nontrivial system)

What’s obvious to you probably isn’t obvious to others

“An undocumented software system has zero commercial value.” –John Chapin (CTO of Vanu, Inc.)
Maintenance

Maintenance accounts for most of the effort (often 90% or more) spent on a successful software system.

A good design enables the system to adapt to new requirements while maintaining quality.
 Think about the long term, but don’t prematurely optimize.

Good documentation enables others to understand the design.
Correctness

In the end, only correctness matters
 Near-correctness is often easy!
 Correctness can be difficult

How to determine the goal?
 Requirements elicitation
 Design documents for the customer

How to increase the likelihood of getting there?
 You are unlikely to achieve it without use of modularity, abstraction,
 specification, documentation, design, …
 Doing the job right is usually justified by return on investment (ROI)

How to verify that you achieved it?
 Testing
 Reasoning (formal or informal) helps!
Working in a team

No one person can understand all of a realistic system
 Break the system into pieces
 Use modularity, abstraction, specification, documentation

Different points of view bring value

Work effectively with others
 Sometimes challenging, usually worth it

Manage your resources effectively
 Time, people
 Engineering is about tradeoffs

Both technical and management contributions are critical
What you have learned in CSE403; what you will learn

Compare your skills today to last year
- Theory: abstraction, specification, design
- Practice: implementation, testing, teamwork
- Theory & practice: correctness
- Bottom line: Many problems would be easy for you today
 - This is a measure of how much you have learned

Your next project can be much more ambitious

You will continue to learn
- Building interesting systems is never easy
 - Like all worthwhile endeavors
- Practice is a good teacher
 - Requires thoughtful introspection
- Don’t learn only by trial and error!
Wednesday: Course evaluation & review

Please complete the course evaluation form
- Useful to future students
- Useful to course staff
- Useful to the department

Review
- Come with questions (no material prepared)
Go forth and conquer

System building is fun!
It’s even more fun when you build them successfully

Pay attention to what matters
Use the techniques and tools of CSE 403 effectively