Procedure specifications

CSE 403
Outline

Satisfying a specification; substitutability

Stronger and weaker specifications
 Comparing by hand
 Comparing via logical formulas
 Comparing via transition relations

Specification style; checking preconditions
Satisfaction of a specification

Let P be an implementation and S a specification

P satisfies S iff

Every behavior of P is permitted by S
“The behavior of P is a subset of S”

The statement “P is correct” is meaningless
Though often made!

If P does not satisfy S, either (or both!) could be “wrong”
“One person’s feature is another person’s bug.”
It’s usually better to change the program than the spec
Procedure specifications

Example of a procedure specification

// requires i > 0
// modifies nothing
// returns true iff i is a prime number
public static boolean isPrime (int i)

General form of a procedure specification

// requires
// modifies
// throws
// effects
// returns
A specification denotes a set of procedures

Some set of procedures satisfies a specification
Suppose a procedure takes an integer as an argument
Spec 1: “returns an integer \(\geq \) its argument”
Spec 2: “returns a non-negative integer \(\geq \) its argument”
Spec 3: “returns argument + 1”
Spec 4: “returns argument\(^2\)”
Spec 5: “returns Integer.MAX_VALUE”

Consider these implementations
Code 1: \(\text{return arg * 2;} \)
Code 2: \(\text{return abs(arg);} \)
Code 3: \(\text{return arg + 5;} \)
Code 4: \(\text{return arg * arg;} \)
Code 5: \(\text{return Integer.MAX_VALUE;} \)
Specification strength and substitutability

A stronger specification promises more
 It constrains the implementation more
 The client can make more assumptions

Substitutability
 A stronger specification can always be substituted for a weaker one
Comparing specifications and procedures

We wish to compare procedures to specifications
Determine whether the procedure satisfies the specification
This indicates whether the implementer has succeeded

We wish to compare specifications to one another
Determine which specification (if either) is stronger
A procedure satisfying a stronger specification can be used anywhere that a weaker specification is required

Three ways to compare (use whichever is most convenient)
1. By hand; examine each clause
2. Logical formulas representing the specification
3. Transition relations
We can weaken a specification by
Making requires harder to satisfy (strengthening requires)
Preconditions: contravariant, all other clauses: covariant
Adding things to modifies clause (weakening modifies)
Making effects easier to satisfy (weakening effects)
Guaranteeing less about throws (weakening throws)
Guaranteeing less about returns value (weakening returns)

The strongest (most constraining) spec has the following:
requires clause: true
modifies clause: nothing
effects clause: false
throws clause: nothing
returns clause: false
(This particular spec is so strong as to be useless.)
Comparing logical formulas (comparison technique 2)

Specification S1 is stronger than S2 iff:
∀ P, (P satisfies S1) ⇒ (P satisfies S2)

If each specification is a logical formula, this is equivalent to:
S1 ⇒ S2

So, convert each spec to a formula (see following slides)
This specification:
// requires R
// modifies M
// effects E

is equivalent to this single logical formula:
R ⇒ (E ∧ (nothing but M is modified))
What about throws and returns? Absorb them into effects.

Final result: S1 is stronger than S2 iff
(R₁ ⇒ (E₁ ∧ only-modifies-M₁)) ⇒ (R₂ ⇒ (E₂ ∧ only-modifies-M₂))
Convert spec to formula, step 1: absorb throws, returns

How to write a specification:
requires (unchanged) modifies (unchanged) throws effects } correspond to resulting "effects"
returns

Example (from java.util.ArrayList<T>):
// requires: true // modifies: this[index] // throws: IndexOutOfBoundsException if index < 0 || index ≥ size() // effects: this_post[index] = element // returns: this_pre[index]
T set(int index, T element)

Equivalent spec, after absorbing throws and returns into effects:
// requires: true // modifies: this[index] // effects: if index < 0 || index ≥ size() then throws IndexOutOfBoundsException // else this_post[index] = element && returns this_pre[index]
T set(int index, T element)
Convert spec to formula: eliminate requires, modifies

Single logical formula
requires ⇒ \((\text{not-modified}) \land \text{effects}\)
“not-modified” preserves every field not in modifies clause
Logical fact: If precondition is false, formula is true
Recall: \(\forall x. x \Rightarrow true\); \(\forall x. false \Rightarrow x\); \((x \Rightarrow y) \equiv (\neg x \lor y)\)

Example:
// requires: true
// modifies: this[index]
// effects: \(E\)
\(T \text{ set(int index, T element)}\)

Result:
true ⇒ \(((\forall i\neq \text{index}. \text{this}_{\text{pre}}[i] = \text{this}_{\text{post}}[i]) \land E)\)
Transition relations (comparison technique 3)

Transition relation relates prestates to poststates
Contains all possible \(\langle \text{input}, \text{output} \rangle \) pairs

Transition relation maps procedure arguments to results

```java
int increment(int i) {
    return i+1;
}
```

```java
double mySqrt(double a) {
    if (Random.nextBoolean())
        return Math.sqrt(a);
    else
        return - Math.sqrt(a);
}
```

Specifications have transition relations, too
Contains just as much information as other forms of specification
Satisfaction via transition relations

A **stronger** specification has a **smaller** transition relation

Rule: P satisfies S iff P is a subset of S
 (when both are viewed as transition relations)

Sqrt specification (S\textsubscript{sqrt})

// requires x is a perfect square
// returns positive or negative square root
int sqrt (int x)

Transition relation: \langle 0,0 \rangle, \langle 1,1 \rangle, \langle 1,-1 \rangle, \langle 4,2 \rangle, \langle 4,-2 \rangle, …

Sqrt code (P\textsubscript{sqrt})

int sqrt (int x) {
 // … always returns positive square root
}

Transition relation: \langle 0,0 \rangle, \langle 1,1 \rangle, \langle 4,2 \rangle, …

P\textsubscript{sqrt} satisfies S\textsubscript{sqrt} because P\textsubscript{sqrt} is a subset of S\textsubscript{sqrt}
Beware transition relations in abbreviated form

“P satisfies S iff P is a subset of S” is a good rule
But it gives the wrong answer for transition relations in abbreviated form
(The transition relations we have seen so far are in abbreviated form!)

anyOdd specification \((S_{\text{anyOdd}})\)
// requires \(x = 0\)
// returns any odd integer
int anyOdd (int x)
Abbreviated transition relation: \(\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots\)

anyOdd code \((P_{\text{anyOdd}})\)
int anyOdd (int x) {
 return 3;
}
Transition relation: \(\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots\)

The code satisfies the specification, but the rule says it does not
\(P_{\text{anyOdd}}\) is not a subset of \(S_{\text{anyOdd}}\)
because \(\langle 1,3 \rangle\) is not in the specification’s transition relation

We will see two solutions to this problem
Satisfaction via full transition relations (option 1)

The transition relation should make explicit everything an implementation may do

Problem: abbreviated transition relation for S does not indicate all possibilities

anyOdd specification (S_{anyOdd}):

// requires $x = 0$
// returns any odd integer
int anyOdd (int x)

Full transition relation: $\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots$
$\langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \ldots, \langle 1, \text{exception} \rangle, \langle 1, \text{infinite loop} \rangle, \ldots$
$\langle 2, 0 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \ldots, \langle 2, \text{exception} \rangle, \langle 2, \text{infinite loop} \rangle, \ldots$

anyOdd code (P_{anyOdd})

int anyOdd (int x) {
 return 3;
}

Transition relation: $\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots$

The rule “P satisfies S iff P is a subset of S” gives the right answer for full relations

Downside: writing the full transition relation is bulky and inconvenient

It’s more convenient to make the implicit notational assumption:
For elements not in the domain of S, any behavior is permitted.
(Recall that a relation maps a domain to a range.)
Satisfaction via abbreviated transition relations (option 2)

New rule: P satisfies S iff P | (Domain of S) is a subset of S
where “P | D” = “P restricted to the domain D”
i.e., remove from P all pairs whose first member is not in D
(recall that a relation maps a domain to a range)

anyOdd specification (S_{\text{anyOdd}})
// requires x = 0
// returns any odd integer
int anyOdd (int x)

Abbreviated transition relation: ⟨0,1⟩, ⟨0,3⟩, ⟨0,5⟩, ⟨0,7⟩, …

anyOdd code (P_{\text{anyOdd}})
int anyOdd (int x) {
 return 3;
}

Transition relation: ⟨0,3⟩, ⟨1,3⟩, ⟨2,3⟩, ⟨3,3⟩, …

Domain of S = { 0 }

P | (domain of S) = ⟨0,3⟩, which is a subset of S, so P satisfies S

The new rule gives the right answer even for abbreviated transition relations
We’ll use this version of the notation in class
Abbreviated transition relations, summary

The abbreviated version of the transition relation can be misleading
 The true transition relation contains all the pairs

When doing comparisons
 Use the expanded transition relation, or
 Restrict the domain when comparing

Either approach makes the “smaller is stronger rule” work
Review: strength of a specification

A stronger specification is satisfied by fewer procedures

A stronger specification has
weaker preconditions (note contravariance)
stronger postcondition
fewer modifications
Advantage of this view: can be checked by hand

A stronger specification has a (logically) stronger formula
Advantage of this view: mechanizable in tools

A stronger specification has a smaller transition relation
Advantage of this view: captures intuition of “stronger = smaller” (fewer choices)
Specification style

Typically have only one of effects and returns
A procedure has a side effect or is called for its value
Exception: return old value, as for `HashMap.put`

The point of a specification is to be helpful
Formalism helps, overformalism doesn't

A specification should be
coherent (not too many cases)
informative (bad example: `HashMap.get`)
strong enough (to do something useful, to make guarantees)
weak enough (to permit (efficient) implementation)
Checking preconditions

- makes an implementation more robust
- provides better feedback to the client
- avoids silent errors

A quality implementation checks preconditions whenever it is *inexpensive* and *convenient* to do so