Understanding ADTs
Ways to get your design right

The hard way
Start hacking
When something doesn't work, hack some more
 How do you know it doesn't work?
 Need to reproduce the errors your users experience
Apply caffeine liberally

The easier way
Plan first (specs, system decomposition, tests, ...)
Less apparent progress upfront
Faster completion times
Better delivered product
Less frustration
Ways to verify your code

The hard way
Make up some inputs
If it doesn't crash, ship it
When it fails in the field, attempt to debug

The easier way
Reason about possible behaviors and desired outcomes
Construct simple tests that exercise those behaviors

Another way that can be easy
Prove that the system does what you want
Rep invariants are preserved
Implementation satisfies specification
Proof can be formal or informal (we will be informal)
Complementary to testing
Uses of reasoning

Goal: correct code
Verify that rep invariant is satisfied
Verify that the implementation satisfies the spec
Verify that client code behaves correctly

Assuming that the implementation is correct
Goal: Demonstrate that rep invariant is satisfied

Exhaustive testing
Create every possible object of the type
Check rep invariant for each object
Problem: impractical

Limited testing
Choose representative objects of the type
Check rep invariant for each object
Problem: did you choose well?

Reasoning
Prove that all objects of the type satisfy the rep invariant
Sometimes easier than testing, sometimes harder
Every good programmer uses it as appropriate
All possible objects (and values) of a type

Make a new object
 constructors
 producers

Modify an existing object
 mutators
 observers, producers (why?)

Limited number of operations, but infinitely many objects
 Maybe infinitely many values as well
Examples of making objects

```
<table>
<thead>
<tr>
<th>a = constructor()</th>
</tr>
</thead>
<tbody>
<tr>
<td>b = producer(a)</td>
</tr>
<tr>
<td>c = a.mutator()</td>
</tr>
<tr>
<td>d = a.observer()</td>
</tr>
<tr>
<td>e = producer(b)</td>
</tr>
<tr>
<td>f = b.mutator()</td>
</tr>
<tr>
<td>g = b.observer()</td>
</tr>
</tbody>
</table>
```

Infinitely many possibilities
We cannot perform a proof that considers each possibility case-by-case
Solution: induction

Induction: technique for proving infinitely many facts using finitely many proof steps

For constructors ("basis step")
Prove the property holds on exit

For all other methods ("inductive step")
Prove that if the property holds on entry, then it holds on exit

If the basis and inductive steps are true:
There is no way to make an object for which the property does not hold
Therefore, the property holds for all objects
Inductive proof that $x+1 > x$

ADT: the natural numbers (non-negative integers)

- constructor: 0 (zero)
- producer: succ (successor: $\text{succ}(x) = x+1$)
- mutators: none
- observers: value

Axioms:

1. $\text{succ}(0) > 0$
2. $(\text{succ}(i) > \text{succ}(j)) \iff i > j$

Goal: prove that for all natural numbers x, $\text{succ}(x) > x$

Possibilities for x:

1. x is 0
 - $\text{succ}(0) > 0$
 axiom #1
2. x is $\text{succ}(y)$ for some y
 - $\text{succ}(y) > y$
 assumption
 - $\text{succ}(\text{succ}(y)) > \text{succ}(y)$
 axiom #2
 - $\text{succ}(x) > x$
 def of $x = \text{succ}(y)$
Outline for remainder of lecture

1. Prove that rep invariant is satisfied
2. Prove that client code behaves correctly
 (Assuming that the implementation is correct)
 CharSet Abstraction

// Overview: CharSets are finite mutable sets of chars.
// effects: creates a fresh, empty CharSet
public CharSet ()

// modifies: this
// effects: thispost = thispre U {c}
public void insert (char c);

// modifies: this
// effects: thispost = thispre - {c}
public void delete (char c);

// returns: (c ∈ this)
public boolean member (char c);

// returns: cardinality of this
public int size ();
Implementation of CharSet

// Rep invariant: elts has no nulls and no duplicates

public CharSet () { // constructor
 elts = new ArrayList<Character>();
}
public void delete (char c) {
 elts.remove (new Character (c));
}
public void insert (char c) {
 if (! member(c))
 elts.add (new Character (c));
}
public boolean member (char c) {
 return elts.contains (new Character (c));
}
Proof of CharSet representation invariant

Rep invariant: elts has no nulls and no duplicates

Base case:
 Constructor sets elts to the empty ArrayList<Character>
 This satisfies the rep invariant

Inductive step:
 For each other operation:
 Assume rep invariant holds before the operation
 Prove rep invariant holds after the operation
Inductive step, member

Rep invariant: elts has no nulls and no duplicates

public boolean member (char c) {
 return elts.contains (new Character (c));
}

contains doesn’t change elts, so neither does member. Conclusion: rep invariant is preserved.

Why do we even need to check member?
After all, the specification says that it does not mutate set.

Reasoning must account for all possible arguments
It’s best not to involve the specific values in the proof
Inductive step, delete

Rep invariant: elts has no nulls and no duplicates

```java
public void delete (char c) {
    elts.remove (new Character (c));
}
```

remove either leaves elts unchanged or removes element. Rep invariant can only be made false by adding elements. Conclusion: rep invariant is preserved.
Inductive step, `insert`

Rep invariant: elts has no nulls and no duplicates

```java
public void insert (char c) {
    if (! this.member(c))
        elts.add (new Character (c));
}
```

If c is in elts\textsubscript{pre}:
 elts is unchanged
 Therefore, rep invariant is preserved.

If c is not in elts\textsubscript{pre}:
 new elt is not null or a duplicate
 Therefore, rep invariant is preserved.
Reasoning about mutations to the rep

Inductive step must consider all possible changes to the rep

A possible source of changes: representation exposure
If the proof does not account for this, then the proof is invalid

An important reason to protect the rep:
Compiler can help verify that there are no external changes
Induction for reasoning about uses of ADT’s

Induction on specification, not on code
Abstract values (e.g., specification fields) may differ from concrete representation
Can ignore observers, since they do not affect abstract state
 How do we know that?

Axioms
 specs of operations
 axioms of types used in overview parts of specifications
Letter sets (case-insensitive character sets)

// A LetterSet (case-insensitive char set) is a mutable finite set of characters.
// No LetterSet contains two chars with the same lower-case representation.

// effects: creates an empty LetterSet
public LetterSet () {

// Insert c if this contains no other char with same lower-case representation.
// modifies: this
// effects: this<post> = if (∃c₁∈ this<pre> s.t. toLowerCase(c₁) = toLowerCase(c)
// then this<pre>
// else this<pre> U {c}
public void insert (char c);

// modifies: this
// effects: this<post> = this<pre> - {c}
public void delete (char c);

// returns: (c ∈ this)
public boolean member (char c);

// returns: |this|
public int size () ;
Goal: prove that LetterSet contains two different letters

Prove: $|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \ [\text{toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])$

Two possibilities for how S was made: by the constructor, or by insert

Base case: $S = \{\}$, (S was made by the constructor):
property holds (vacuously true)

Inductive case (S was made by a call of the form “T.insert(c)”):
Assume: $|T| > 1 \Rightarrow (\exists c_3, c_4 \in T \ [\text{toLowerCase}(c_3) \neq \text{toLowerCase}(c_4)])$
Show: $|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \ [\text{toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])$

where $S = T$.insert(c)

= “if ($\exists c_5 \in T \ s.t. \ \text{toLowerCase}(c_5) = \text{toLowerCase}(c)$)
 then T
 else $T \cup \{c\}$”

The value for S came from the specification of insert, applied to T.insert(c):

public void insert (char c);
 modifies: this
effects: thispost $= \text{if } (\exists c_1 \in S \ s.t. \ \text{toLowerCase}(c_1) = \text{toLowerCase}(c))$
 then thispre
 else thispre $U \{c\}$

(Inductive case is continued on the next slide.)
Goal: prove that LetterSet contains two different letters.
Inductive case: $S = T.insert(c)$

Goal (from previous slide):
Assume: $|T| > 1 \Rightarrow (\exists c_3, c_4 \in T \ [\text{toLowerCase}(c_3) \neq \text{toLowerCase}(c_4)])$
Show: $|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \ [\text{toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])$
where $S = T.insert(c)$

= “if $(\exists c_5 \in T \ \text{s.t.} \ \text{toLowerCase}(c_5) = \text{toLowerCase}(c))$
then T else $T \cup \{c\}”$

Consider the two possibilities for S (from “if ... then T else $T \cup \{c\}$”):

1. If $S = T$, the theorem holds by induction hypothesis
 The assumption above.

2. If $S = T \cup \{c\}$, there are three cases to consider:
 $|T| = 0$: Vacuous case, since hypothesis of theorem (“$|S| > 1$”) is false
 $|T| \geq 1$: We know that T did not contain a char of $\text{toLowerCase}(h)$, so the theorem holds by the meaning of union
 Bonus: $|T| > 1$: By inductive assumption, T contains different letters, so by the meaning of union, $T \cup \{c\}$ also contains different letters
Conclusion

The goal is correct code
A proof is a powerful mechanism for ensuring correctness
Formal reasoning is required if debugging is hard
Inductive proofs are the most effective in computer science

Types of proofs:
Verify that rep invariant is satisfied
Verify that the implementation satisfies the spec
Verify that client code behaves correctly