Eric Orth
CSE 403

1/8/07

Pictionary Game

Operational Concepts

The proposed project would be to create a computer program capable of allowing multiple users to play a game of Pictionary with each other using the program. Each user would run their own version of the program, and it would be able to connect to the same program running on other users’ computers.

The program would, of course, be created for anyone interested in playing a game of Pictionary with their friends. The program would be particularly beneficial in cases where the users are separated by physical distance or where physical play on paper is too inconvenient.

I find that this would be an interesting project because I simply enjoy a good game of Pictionary. In the assignment description, in the rule against videogames, Pictionary was explicitly allowed. I looked at that and said to myself that it sounded like an interesting enough project.

The program would be designed for small groups of people to play together. Games played with the program would have about the same number of participants as a normal game of Pictionary. The program may therefore only work for games of 10-15 people or less.

System Requirements

The user would begin a game of play by entering the other players to play with. The user would do this by entering in the IP address (or DNS of some sort) of another player. The program would then connect with the program running on that user’s computer and also connect with all users already connected to that player.
When the players decide to begin the game, one player (the one who initiated the game) will be able to set the teams or request that the program create a given number of teams randomly. Other gameplay options may be available at this point.

Actual gameplay would be very similar to an actual game of Pictionary. Teams would alternate turns and within each team, the individual users would alternate as the artist. When a user is the artist, he or she would be given a word and allowed a short time period to think about it. Nobody but the artist is shown the word. When the user presses a button on the interface (or time runs out) the user would gain control of the drawing panel. All other users in the game would be able to see what is being drawn. Other members of the artist’s team would also have a textbox for submitting guesses about what the word is. They would have an unlimited number of guesses to figure out what the user is drawing, and the artist would be shown their guesses as well. When a user correctly guesses what is being drawn or a time limit runs out, the drawing period is over. The next team would take a turn.
Gameplay would end after a set number of turns. At that time, the team with the highest score (assigned by correctly guessing words) would be declared the winning team. Scores would be shown at all times on the side of the screen.

System and Software Architecture

The program will be created using the Java programming language, and the standard Java libraries. No significant use will be made of any external toolsets.
During gameplay, only one instance of the program (the one that initially created the game) will be primarily responsible for gameplay. Other instances will act as clients and receive information from the network connection for necessary information. This will require good separation of view/controller from the model allowing the view to use either the model in the local program or the external one from the primary instance of the program.

The view will consist of separate components such as a display for the image being drawn, buttons, score, etc. It will be connected to a model module. This module will have two versions. One contains network protocols for communicating with the primary instance. The other will be the basic local module used in the primary instance.

Lifecycle Plan
The project will begin with about a week of basic planning activity with primary focus on the view and its interface to the model. All initial work will be performed on the view, and a preliminary model will be created for it to work with. This will allow a basic prototype of the view to be created within about two weeks.
Using this prototype, further assessments and planning activity will take place for another week to discuss design of the model and necessary changes to the view. The prototype will be analyzed for both what worked for the view and what changes to the model interface would be necessary for the project to work.

Another two or three weeks will then be spent refining the view and creating the model and network modules. All modules will have basic functionality when rigorous testing and analysis begins. This process will run concurrent to finishing touches on the project until the end of project development.

The project will require five or six workers. In general, all workers will spend all of their time on the current phase of the project with the phases having been laid out in the rough schedule above.

Feasibility Rationale
I believe the project will be completed successfully because of its highly modularized design. Overall project risk is minimized because mistakes should only affect the module they are contained within. Changes to each module should not affect the operation of any of the other modules.
Some risks of course still exist in the interfaces between modules. This is why a lot of planning time should be spent assessing what is needed in the interfaces, so that they will be implemented well the first time. Any changes there will have to be made across multiple modules.

There are many assumptions being made, because I do not have a good understanding of how many of the key features will actually be implemented. For example, I know very little about network code, so I am assuming that we will find a solution to achieve what we need for our network modules.
Primary Instance

View Module

Model Module

Model Interface

Network Module

Model Interface

Network Model Module

View Module

Client Instance

Model Interface

Network Model Module

View Module

Client Instance

