Cargo Planning and Tracking Network

Concept by Brandon Bell

1. Operational Concepts

The proposed project is for a cargo transport planning and tracking system. Given the cargo carriers that exist in the system and various cargoes' origins and destinations, this application will be able to plan the most efficient routes for those cargoes' deliveries. This is targeted to a customer who would need a national-level delivery system, but not a local-level system.

2. System Requirements

The project will feature a clean and practical GUI that interacts with the server. The interface will be lightweight and most or all of the complex architecture will be kept on the server itself. The interface will allow for retrieving information from the planning and tracking database, such as cargo and carrier data and route plans. Additionally, it will provide tools to update the database with new information such as new cargo and resource changes.

3. System and Software Architecture

The system will be client-server based with the client being a means for input to and output from the server, with the server doing the planning and tracking. The client will be a Java applet or JSP that is loaded from a sever in order to localize any future changes that need to be made: a change in the database may require a change in the interface, which will not need to be redistributed. The client interface and database will be able to be on separate servers. MySQL will be used for the database system since it is freely available and can be integrated into Java.

4. Lifecycle Plan

The first step will be to refine the above high-level design. This will be a fairly short process because this design does not have to be finely detailed. The next step will be a more detailed design of the system that will cover each of the main components in the architecture and separate them into smaller modules, which will not necessarily be the objects and classes in the implementation, and a plan for how these modules will interact to create the full system. At this point it should be feasible to split the work among different people, according to how the modules are organized and the predicted difficulty their implementation will be. This should take roughly a week because designing this part correctly is important to the design of the code, yet there are more important design issues that should be given more time in the next step. The next step will be the design and plan for the major classes that will be needed to implement the system as it was designed in the previous step. The goal here is the use modern OOP practices to make a modularized implementation that is easy to test and maintain. Since this process is very important to a make the project easier to implement, it should take about two weeks to finish. After this, the code will be implemented. Since it is designed to be modular, separate modules can be created alone by different people. In order to help reduce complexity of the project and improve the code, one or two code reviews will be scheduled during this process. To leave time for testing and bug fixing, this step would ideally take roughly four to five weeks to create a fully functional product. During the testing phase, unit tests would be used to take advantage of the modular design. Ideally the unit tests would have been fully or partially written as a part of the implementation step, and if possible the JUnit interfaces would be used to do this. Overall, a team size of five is most likely the best. Some members should have knowledge of databases, others in networking using Java, and some in GUI implementation. All team members should have general Java programming expertise.

5. Feasibility Rational

The overall design of the project should be simple and the bulk of the time will be spent in the implementation. It should fit in the time frame because the goal is not overly complex. The lifecycle plan was made assuming nine available weeks to work on the project. It is also made assuming that there will be team members who have the knowledge required to complete their modules. A major feature that is not being included due to time constraints is a local-level cargo system. It would be more complex and require extra time spent researching knowledge that nobody in the team is likely to have. However, ideally the project would be designed in a way such that adding a local-level system would be feasible without redesigning the whole system.

User

Server

Database

Server

Web

Browser/

Client

Interface

User

Web

Browser/

Client

Interface

User

.

.

.

High-level system diagram

