Ian Struiksma
Alex Odle

Operational Concepts
$uiteRate$ is an online service for roommates looking to organize and consolidate communal expenditures with one easy-to-use tool. Users have the ability to add everyday expenses like groceries and home improvement items. In addition, users can integrate recurring bills with powerful customization features including the option to set exact and/or relative amounts owed by each roommate for a particular bill. With every transaction, each user’s balance will be adjusted accordingly and email alerts will be sent out alerting users when action is required of them, whether it be paying a bill, or repaying a roommate for already doing so.
$uiteRate$ is targeted towards any household where two or more roommates share the cost of expenses. Anyone who has dealt with this situation can attest that it often becomes a hassle to coordinate all the expenses of the house. In many situations, one unfortunate roommate will be assigned as the “home accountant” and will waste countless hours of his/her time calculating the balances of each person and tracking them down, ensuring that he or she actually pays what they owe. $uiteRate$ virtually eliminates the need for that person, doing all the work of their job, and more.
Considering the breadth of its target consumer, $uiteRate$ will be capable of supporting a high volume of users. Users will register for a free account on our website which gives them the ability to create a “household”. All the other roommates can now register and join the household in order to get started. This system allows for as many customers to use our service as our hardware can support.
System Requirements

· Users register for a free account through our website

· A user can create a new household or join an existing one
· A user can add a recurring expense once that will be again added after each payment period until canceled

· A user has the ability to add a new expense for the household, complete with deadline, manually changing the individual weights of the expense for each roommate

· A user can request finances to pay an expense, which will increase the amount owed to that roommate from the others

· A user can send emails to request or remind other roommates, as well as an option to send emails to remind before bills are due

· Modifiable privacy settings will be available to be set at different levels for individual users

· Option for “Smart-Balancing” for each user – Automatically adjust balances between roommates to cut out unnecessary relationships (i.e. Roommate A owes $20 to Roommate B, who owes $80 to Roommate C, who owes $20 to Roommate A. Smart-Balancing can simplify this down to Roommate B owing Roommate C $60)

· Offer webservices for other applications
Below is an example of what the “user” page could look like in $uiteRate$.

[image: image1.png]§u te Rate§

House Settings

Update Profile

Privacy Settings

User | Expenses Log Out

Welcome Alex!

Your Rommates Owe Yo

John M : $230.00 View Details Resolve Balance Send Alert
Sally). : $10.00 View Details Resolve Balance Send Alert
Chris B. : -5100.00 View Details Resolve Balance
Donny S. & -5150.00 View Details Resolve Balance

Upcoming Expenses

Cable Bil - 4/1 (Four Days) - Pay John M. $45.00

Electric - 4/1 (Four Days) - Pay Donny S. $32.50

View All

Example of $uiteRate$
System and Software Architecture
$uiteRate$ will consist of three main modules: the database that will contain all the user and expense data, the backend server that will provide methods for manipulating and retrieving information for the database, and the web interface that will provide users with access to the application.
· The database will managed with SQL database management software.
· The backend server will provide business logic written in C#.

· The web interface will use html, ASP.NET, and possibly other web technologies such as AJAX.

Three Main Components of $uiteRate$

[image: image2]
Lifecycle Plan
There are three main components to our product: the database, the backend server, and the web interface. The database should be a relatively small task to complete compared to the other two components. Considering this, we will expect two developers to be able to finish the database functionality within 2 weeks. Concurrently, 2-3 developers with skills in user interface design and web development should be working on the web interface which is expected to have a beta release around weeks 4-5. The remaining 2-4 developers will be working on the backend server which will also have an expected beta release during weeks 4-5. In addition, the database developers, when finished, will be split between the web interface and backend server as needed. This allows 3 weeks at the end for integration and hopefully multiple beta releases.
Feasibility Rationale
Our product should be able to be completed within the desired deadlines since the underlying application is not overly complex. Proper planning and distribution of resources allow the project to be broken up between developers in such a way that will allow us to maximize efficiency. Making the assumption that our development team includes members who have, or are willing to learn, the necessary skills to complete $uiteRate$, the risks should be minimal. Multiple optional features are available for extension or addition as time permits, ensuring that our project will be scalable depending on time and resources.

Web Interface

Backend Server

DB

