Andy Hou
FileSpot - A collaborative file manager.

CSE 403 - Software Engineering
Operational Concepts
Everyone who uses a computer must manipulate files. Some people might create and open documents and spreadsheets for work. Others manage media files and playlists for entertainment. And some people like to share files with their friends. If everyone manipulates files, why are existing file managers so backwards?
FileSpot is a collaborative file manager that is fast and simple to use. It is meant to be a replacement for built in file managers like Windows explorer and Mac OS X finder. FileSpot is based around the idea of instant search to find files. Multiple searches and folders can be open at once in different tabs. Basic commands like move, copy, and rename will be very intuitive and fast.

In addition to browsing local file systems, FileSpot will also be able to browse and manipulate file systems remotely. Of course access will require a password and data traveling across the network will be encrypted for security. FileSpot will support social collaboration like file permissions, viewing and reverting previous versions, and merging changes into one file.

FileSpot is meant to be a lightweight system. Since people prefer to have different features in their file managers, FileSpot will include only the standard functionality in order to be as simple as possible, and people can install plugins for additional functionality if they choose. One plugin could be color coded filenames for different types of files. Another example is bar graphs to show disk usage of files.
System Requirements
The essential features of FileSpot will be:
· Browse files stored on local hard drives or securely over a network and perform the basic file operations like opening, moving, copying, renaming, and deleting files.
· Collaboratively share files with people. People will be able to access other people’s files over the network if they are given permission. The shared files can be manipulated just like their own files, if they are given all the permissions.
· Browse and compare previous versions of files. The previous versions of files will be automatically saved. If the file has been edited by multiple people, the version history will show who made what modifications.
· Search for files. Results will show up as you type. The results will also become better the more you use the system, as it learns which files you click on.
Recommended but not essential features:

· Tag files with one or more labels. Tagged files can be searched for by their tag.
· Scheduled backups for files. Backups will be done automatically.
· Plugin manager. Users can install and remove plugins, which will add additional functionality.
· Switch quickly between folders and searches by using tabs.

· Auto complete when entering in a path.

· Drag and drop mouse gesture brings up common drop targets.
User interface mockup:
[image: image1.png]

System and Software Architecture[image: image2.png]

It will be a client and server architecture. The client gets data about files from the server and presents it to the user. The server will handle all the backend work with the file system. The server can either be run on the same machine as the client for use with local file systems or it can be running on another machine for browsing a remote file system.

Java is the language of choice for both the client and the server because of its platform-independence. It’s also powerful enough to do all the file system backend. The GUI can be created with a GUI builder like Visual Editor for Eclipse.
Lifecycle Plan
A tentative schedule:
· Week 1: Flesh out feature requirements. Assign jobs.
· Week 2-3: Get client/server framework in place. Basic functionality implemented.
· Week 4: Searching implemented.

· Week 5: Polished up the GUI and release beta.

· Week 6-7: Further improvements and features.
· Week 8: Testing and final release.
With 6-8 team members, the roles can be assigned as follows:

· One person as project manager, in charge of feature requirements and organization.
· Two to three people as developers working on the server/backend code.

· Two to three people as developers working on the client/frontend code.

· One person as lead tester, in charge of testing.
Feasibility Rationale
It’s important to note that FileSpot is not a web-based service. Users will not be able to upload and access their files online. Instead it’s assumed that users will set up their own servers and host their files on their own hard drives. This makes the project much easier since it means there will be no database or web programming. It also makes it easier for people who are afraid of putting their data in the hands of people they don’t know.
Java is being used so everyone on the team should already be familiar with the language. There are risks involved however. Searching may not be fast enough for displaying results as you type. Merging may be difficult for binary files. And transferring large encrypted files over the network may be slow. Disk usage for previous versions and file backup may be an issue.
