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Chapter 5

Design in Construction
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Some people might argue that design isn’t really a construction activity, but on small 
projects, many activities are thought of as construction, often including design. On 
some larger projects, a formal architecture might address only the system-level issues 
and much design work might intentionally be left for construction. On other large 
projects, the design might be intended to be detailed enough for coding to be fairly 
mechanical, but design is rarely that complete—the programmer usually designs part 
of the program, officially or otherwise.

Cross-Reference For details 
on the different levels of for-
mality required on large and 
small projects, see Chapter 
27, “How Program Size 
Affects Construction.”

On small, informal projects, a lot of design is done while the programmer sits at the 
keyboard. “Design” might be just writing a class interface in pseudocode before writ-
ing the details. It might be drawing diagrams of a few class relationships before coding 
them. It might be asking another programmer which design pattern seems like a bet-
ter choice. Regardless of how it’s done, small projects benefit from careful design just 
as larger projects do, and recognizing design as an explicit activity maximizes the ben-
efit you will receive from it.

Design is a huge topic, so only a few aspects of it are considered in this chapter. A large 
part of good class or routine design is determined by the system architecture, so be 
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sure that the architecture prerequisite discussed in Section 3.5 has been satisfied. 
Even more design work is done at the level of individual classes and routines, 
described in Chapter 6, “Working Classes,” and Chapter 7, “High-Quality Routines.”

If you’re already familiar with software design topics, you might want to just hit the 
highlights in the sections about design challenges in Section 5.1 and key heuristics in 
Section 5.3.

5.1 Design Challenges
Cross-Reference The differ-
ence between heuristic and 
deterministic processes is 
described in Chapter 2, 
“Metaphors for a Richer 
Understanding of Software 
Development.”

The phrase “software design” means the conception, invention, or contrivance of a 
scheme for turning a specification for computer software into operational software. 
Design is the activity that links requirements to coding and debugging. A good top-
level design provides a structure that can safely contain multiple lower-level designs. 
Good design is useful on small projects and indispensable on large projects. 

Design is also marked by numerous challenges, which are outlined in this section. 

Design Is a Wicked Problem
The picture of the software 
designer deriving his design 
in a rational, error-free way 
from a statement of require-
ments is quite unrealistic. No 
system has ever been devel-
oped in that way, and proba-
bly none ever will. Even the 
small program develop-
ments shown in textbooks 
and papers are unreal. They 
have been revised and pol-
ished until the author has 
shown us what he wishes he 
had done, not what actually 
did happen.
—David Parnas and 
Paul Clements

Horst Rittel and Melvin Webber defined a “wicked” problem as one that could be 
clearly defined only by solving it, or by solving part of it (1973). This paradox implies, 
essentially, that you have to “solve” the problem once in order to clearly define it and 
then solve it again to create a solution that works. This process has been motherhood 
and apple pie in software development for decades (Peters and Tripp 1976).

In my part of the world, a dramatic example of such a wicked problem was the design 
of the original Tacoma Narrows bridge. At the time the bridge was built, the main con-
sideration in designing a bridge was that it be strong enough to support its planned 
load. In the case of the Tacoma Narrows bridge, wind created an unexpected, side-to-
side harmonic ripple. One blustery day in 1940, the ripple grew uncontrollably until 
the bridge collapsed, as shown in Figure 5-1.

This is a good example of a wicked problem because, until the bridge collapsed, its 
engineers didn’t know that aerodynamics needed to be considered to such an extent. 
Only by building the bridge (solving the problem) could they learn about the addi-
tional consideration in the problem that allowed them to build another bridge that 
still stands.
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Figure 5-1 The Tacoma Narrows bridge—an example of a wicked problem.

One of the main differences between programs you develop in school and those you 
develop as a professional is that the design problems solved by school programs are 
rarely, if ever, wicked. Programming assignments in school are devised to move you in a 
beeline from beginning to end. You’d probably want to tar and feather a teacher who gave 
you a programming assignment, then changed the assignment as soon as you finished 
the design, and then changed it again just as you were about to turn in the completed pro-
gram. But that very process is an everyday reality in professional programming.

Design Is a Sloppy Process (Even If it Produces a Tidy Result)

The finished software design should look well organized and clean, but the process 
used to develop the design isn’t nearly as tidy as the end result.

Further Reading For a fuller 
exploration of this viewpoint, 
see “A Rational Design Pro-
cess: How and Why to Fake 
It” (Parnas and Clements 
1986).

Design is sloppy because you take many false steps and go down many blind alleys—
you make a lot of mistakes. Indeed, making mistakes is the point of design—it’s 
cheaper to make mistakes and correct designs than it would be to make the same mis-
takes, recognize them after coding, and have to correct full-blown code. Design is 
sloppy because a good solution is often only subtly different from a poor one. 
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Cross-Reference For a better 
answer to this question, see 
“How Much Design is 
Enough?” in Section 5.4 later 
in this chapter. 

Design is also sloppy because it’s hard to know when your design is “good enough.” 
How much detail is enough? How much design should be done with a formal design 
notation, and how much should be left to be done at the keyboard? When are you 
done? Since design is open-ended, the most common answer to that question is 
“When you’re out of time.”

Design Is About Tradeoffs and Priorities

In an ideal world, every system could run instantly, consume zero storage space, use 
zero network bandwidth, never contain any errors, and cost nothing to build. In the real 
world, a key part of the designer’s job is to weigh competing design characteristics and 
strike a balance among those characteristics. If a fast response rate is more important 
than minimizing development time, a designer will choose one design. If minimizing 
development time is more important, a good designer will craft a different design.

Design Involves Restrictions

The point of design is partly to create possibilities and partly to restrict possibilities. If 
people had infinite time, resources, and space to build physical structures, you would 
see incredible sprawling buildings with one room for each shoe and hundreds of rooms. 
This is how software can turn out without deliberately imposed restrictions. The con-
straints of limited resources for constructing buildings force simplifications of the solu-
tion that ultimately improve the solution. The goal in software design is the same.

Design Is Nondeterministic

If you send three people away to design the same program, they can easily return with 
three vastly different designs, each of which could be perfectly acceptable. There 
might be more than one way to skin a cat, but there are usually dozens of ways to 
design a computer program.

Design Is a Heuristic Process

Because design is nondeterministic, design techniques tend to be heuristics—“rules of 
thumb” or “things to try that sometimes work”—rather than repeatable processes that 
are guaranteed to produce predictable results. Design involves trial and error. A 
design tool or technique that worked well on one job or on one aspect of a job might 
not work as well on the next project. No tool is right for everything. 

Design Is Emergent
cc2e.com/0539 A tidy way of summarizing these attributes of design is to say that design is 

“emergent.” Designs don’t spring fully formed directly from someone’s brain. They 
evolve and improve through design reviews, informal discussions, experience writing 
the code itself, and experience revising the code.

KEY POINT
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Further Reading Software 
isn’t the only kind of struc-
ture that changes over time. 
Physical structures evolve, 
too—see How Buildings 
Learn (Brand 1995). 

Virtually all systems undergo some degree of design changes during their initial devel-
opment, and then they typically change to a greater extent as they’re extended into 
later versions. The degree to which change is beneficial or acceptable depends on the 
nature of the software being built.

5.2 Key Design Concepts
Good design depends on understanding a handful of key concepts. This section dis-
cusses the role of complexity, desirable characteristics of designs, and levels of design. 

Software’s Primary Technical Imperative: Managing Complexity 
Cross-Reference For discus-
sion of the way complexity 
affects programming issues 
other than design, see 
Section 34.1, “Conquer 
Complexity.”

To understand the importance of managing complexity, it’s useful to refer to Fred 
Brooks’s landmark paper, “No Silver Bullets: Essence and Accidents of Software Engi-
neering” (1987). 

Accidental and Essential Difficulties

Brooks argues that software development is made difficult because of two different 
classes of problems—the essential and the accidental. In referring to these two terms, 
Brooks draws on a philosophical tradition going back to Aristotle. In philosophy, the 
essential properties are the properties that a thing must have in order to be that thing. 
A car must have an engine, wheels, and doors to be a car. If it doesn’t have any of those 
essential properties, it isn’t really a car. 

Accidental properties are the properties a thing just happens to have, properties that 
don’t really bear on whether the thing is what it is. A car could have a V8, a turbo-
charged 4-cylinder, or some other kind of engine and be a car regardless of that detail. 
A car could have two doors or four; it could have skinny wheels or mag wheels. All 
those details are accidental properties. You could also think of accidental properties 
as incidental, discretionary, optional, and happenstance. 

Cross-Reference Accidental 
difficulties are more promi-
nent in early-wave develop-
ment than in late-wave 
development. For details, 
see Section 4.3, “Your Loca-
tion on the Technology 
Wave.”

Brooks observes that the major accidental difficulties in software were addressed long 
ago. For example, accidental difficulties related to clumsy language syntaxes were 
largely eliminated in the evolution from assembly language to third-generation lan-
guages and have declined in significance incrementally since then. Accidental difficul-
ties related to noninteractive computers were resolved when time-share operating 
systems replaced batch-mode systems. Integrated programming environments fur-
ther eliminated inefficiencies in programming work arising from tools that worked 
poorly together. 
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Brooks argues that progress on software’s remaining essential difficulties is bound to 
be slower. The reason is that, at its essence, software development consists of working 
out all the details of a highly intricate, interlocking set of concepts. The essential 
difficulties arise from the necessity of interfacing with the complex, disorderly real 
world; accurately and completely identifying the dependencies and exception cases; 
designing solutions that can’t be just approximately correct but that must be exactly 
correct; and so on. Even if we could invent a programming language that used the 
same terminology as the real-world problem we’re trying to solve, programming 
would still be difficult because of the challenge in determining precisely how the real 
world works. As software addresses ever-larger real-world problems, the interactions 
among the real-world entities become increasingly intricate, and that in turn increases 
the essential difficulty of the software solutions. 

The root of all these essential difficulties is complexity—both accidental and essential. 

Importance of Managing Complexity

There are two ways of con-
structing a software design: 
one way is to make it so sim-
ple that there are obviously 
no deficiencies, and the 
other is to make it so compli-
cated that there are no obvi-
ous deficiencies.
—C. A. R. Hoare

When software-project surveys report causes of project failure, they rarely identify 
technical reasons as the primary causes of project failure. Projects fail most often 
because of poor requirements, poor planning, or poor management. But when 
projects do fail for reasons that are primarily technical, the reason is often uncon-
trolled complexity. The software is allowed to grow so complex that no one really 
knows what it does. When a project reaches the point at which no one completely 
understands the impact that code changes in one area will have on other areas, 
progress grinds to a halt. 

Managing complexity is the most important technical topic in software development. 
In my view, it’s so important that Software’s Primary Technical Imperative has to be 
managing complexity.

Complexity is not a new feature of software development. Computing pioneer Edsger 
Dijkstra pointed out that computing is the only profession in which a single mind is 
obliged to span the distance from a bit to a few hundred megabytes, a ratio of 1 to 109, 
or nine orders of magnitude (Dijkstra 1989). This gigantic ratio is staggering. Dijkstra 
put it this way: “Compared to that number of semantic levels, the average mathemati-
cal theory is almost flat. By evoking the need for deep conceptual hierarchies, the 
automatic computer confronts us with a radically new intellectual challenge that has 
no precedent in our history.” Of course software has become even more complex 
since 1989, and Dijkstra’s ratio of 1 to 109 could easily be more like 1 to 1015 today. 

KEY POINT
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One symptom that you have 
bogged down in complexity 
overload is when you find 
yourself doggedly applying a 
method that is clearly irrele-
vant, at least to any outside 
observer. It is like the 
mechanically inept person 
whose car breaks down—so 
he puts water in the battery 
and empties the ashtrays.
—P. J. Plauger

Dijkstra pointed out that no one’s skull is really big enough to contain a modern com-
puter program (Dijkstra 1972), which means that we as software developers 
shouldn’t try to cram whole programs into our skulls at once; we should try to orga-
nize our programs in such a way that we can safely focus on one part of it at a time. 
The goal is to minimize the amount of a program you have to think about at any one 
time. You might think of this as mental juggling—the more mental balls the program 
requires you to keep in the air at once, the more likely you’ll drop one of the balls, 
leading to a design or coding error. 

At the software-architecture level, the complexity of a problem is reduced by dividing 
the system into subsystems. Humans have an easier time comprehending several sim-
ple pieces of information than one complicated piece. The goal of all software-design 
techniques is to break a complicated problem into simple pieces. The more indepen-
dent the subsystems are, the more you make it safe to focus on one bit of complexity 
at a time. Carefully defined objects separate concerns so that you can focus on one 
thing at a time. Packages provide the same benefit at a higher level of aggregation.

Keeping routines short helps reduce your mental workload. Writing programs in 
terms of the problem domain, rather than in terms of low-level implementation 
details, and working at the highest level of abstraction reduce the load on your brain. 

The bottom line is that programmers who compensate for inherent human limita-
tions write code that’s easier for themselves and others to understand and that has 
fewer errors.

How to Attack Complexity

Overly costly, ineffective designs arise from three sources:

■ A complex solution to a simple problem

■ A simple, incorrect solution to a complex problem

■ An inappropriate, complex solution to a complex problem

As Dijkstra pointed out, modern software is inherently complex, and no matter how 
hard you try, you’ll eventually bump into some level of complexity that’s inherent in the 
real-world problem itself. This suggests a two-prong approach to managing complexity: 

■ Minimize the amount of essential complexity that anyone’s brain has to deal 
with at any one time. 

■ Keep accidental complexity from needlessly proliferating. 

Once you understand that all other technical goals in software are secondary to man-
aging complexity, many design considerations become straightforward. 

KEY POINT
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Desirable Characteristics of a Design
When I am working on a 
problem I never think about 
beauty. I think only how to 
solve the problem. But when 
I have finished, if the solu-
tion is not beautiful, I know it 
is wrong.
—R. Buckminster Fuller

A high-quality design has several general characteristics. If you could achieve all these 
goals, your design would be very good indeed. Some goals contradict other goals, but 
that’s the challenge of design—creating a good set of tradeoffs from competing 
objectives. Some characteristics of design quality are also characteristics of a good 
program: reliability, performance, and so on. Others are internal characteristics of 
the design.

Cross-Reference These 
characteristics are related to 
general software-quality 
attributes. For details on 
general attributes, see Sec-
tion 20.1, “Characteristics of 
Software Quality.”

Here’s a list of internal design characteristics:

Minimal complexity The primary goal of design should be to minimize complexity 
for all the reasons just described. Avoid making “clever” designs. Clever designs are 
usually hard to understand. Instead make “simple” and “easy-to-understand” designs. 
If your design doesn’t let you safely ignore most other parts of the program when 
you’re immersed in one specific part, the design isn’t doing its job. 

Ease of maintenance Ease of maintenance means designing for the maintenance 
programmer. Continually imagine the questions a maintenance programmer would 
ask about the code you’re writing. Think of the maintenance programmer as your 
audience, and then design the system to be self-explanatory.

Loose coupling Loose coupling means designing so that you hold connections 
among different parts of a program to a minimum. Use the principles of  good abstrac-
tions in class interfaces, encapsulation, and information hiding to design classes with 
as few interconnections as possible. Minimal connectedness minimizes work during 
integration, testing, and maintenance.

Extensibility Extensibility means that you can enhance a system without causing 
violence to the underlying structure. You can change a piece of a system without 
affecting other pieces. The most likely changes cause the system the least trauma.

Reusability Reusability means designing the system so that you can reuse pieces of 
it in other systems.

High fan-in High fan-in refers to having a high number of classes that use a given 
class. High fan-in implies that a system has been designed to make good use of utility 
classes at the lower levels in the system.
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Low-to-medium fan-out Low-to-medium fan-out means having a given class use a 
low-to-medium number of other classes. High fan-out (more than about seven) indi-
cates that a class uses a large number of other classes and may therefore be overly 
complex. Researchers have found that the principle of low fan-out is beneficial 
whether you’re considering the number of routines called from within a routine or 
from within a class (Card and Glass 1990; Basili, Briand, and Melo 1996). 

Portability Portability means designing the system so that you can easily move it to 
another environment.

Leanness Leanness means designing the system so that it has no extra parts (Wirth 
1995, McConnell 1997). Voltaire said that a book is finished not when nothing more 
can be added but when nothing more can be taken away. In software, this is especially 
true because extra code has to be developed, reviewed, tested, and considered when 
the other code is modified. Future versions of the software must remain backward-
compatible with the extra code. The fatal question is “It’s easy, so what will we hurt by 
putting it in?”

Stratification Stratification means trying to keep the levels of decomposition strati-
fied so that you can view the system at any single level and get a consistent view. 
Design the system so that you can view it at one level without dipping into other lev-
els. 

Cross-Reference For more 
on working with old systems, 
see Section 24.5, “Refactor-
ing Strategies.”

For example, if you’re writing a modern system that has to use a lot of older, poorly 
designed code, write a layer of the new system that’s responsible for interfacing with 
the old code. Design the layer so that it hides the poor quality of the old code, present-
ing a consistent set of services to the newer layers. Then have the rest of the system 
use those classes rather than the old code. The beneficial effects of stratified design in 
such a case are (1) it compartmentalizes the messiness of the bad code and (2) if 
you’re ever allowed to jettison the old code or refactor it, you won’t need to modify any 
new code except the interface layer.

Cross-Reference An espe-
cially valuable kind of stan-
dardization is the use of 
design patterns, which are 
discussed in “Look for Com-
mon Design Patterns” in 
Section 5.3.

Standard techniques The more a system relies on exotic pieces, the more intimidat-
ing it will be for someone trying to understand it the first time. Try to give the whole 
system a familiar feeling by using standardized, common approaches.
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Levels of Design
Design is needed at several different levels of detail in a software system. Some design tech-
niques apply at all levels, and some apply at only one or two. Figure 5-2 illustrates the levels.

Figure 5-2 The levels of design in a program. The system (1) is first organized into sub-
systems (2). The subsystems are further divided into classes (3), and the classes are divided 
into routines and data (4). The inside of each routine is also designed (5).

Level 1: Software System

In other words—and this is 
the rock-solid principle on 
which the whole of the Cor-
poration’s Galaxywide suc-
cess is founded—their 
fundamental design flaws 
are completely hidden by 
their superficial design flaws. 
—Douglas Adams

The first level is the entire system. Some programmers jump right from the system 
level into designing classes, but it’s usually beneficial to think through higher level 
combinations of classes, such as subsystems or packages. 

Level 2: Division into Subsystems or Packages

The main product of design at this level is the identification of all major subsystems. The 
subsystems can be big: database, user interface, business rules, command interpreter, 

Division into subsystems/packages2

Division into classes within packages3

Software system1

Division into data and routines within classes4

Internal routine design5
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report engine, and so on. The major design activity at this level is deciding how to parti-
tion the program into major subsystems and defining how each subsystem is allowed to 
use each other subsystem. Division at this level is typically needed on any project that 
takes longer than a few weeks. Within each subsystem, different methods of design 
might be used—choosing the approach that best fits each part of the system. In Figure 5-
2, design at this level is marked with a 2.

Of particular importance at this level are the rules about how the various subsystems 
can communicate. If all subsystems can communicate with all other subsystems, you 
lose the benefit of separating them at all. Make each subsystem meaningful by restrict-
ing communications. 

Suppose for example that you define a system with six subsystems, as shown in Fig-
ure 5-3. When there are no rules, the second law of thermodynamics will come into 
play and the entropy of the system will increase. One way in which entropy increases 
is that, without any restrictions on communications among subsystems, communica-
tion will occur in an unrestricted way, as in Figure 5-4.

Figure 5-3 An example of a system with six subsystems. 

Figure 5-4 An example of what happens with no restrictions on intersubsystem 
communications. 

User Interface

Data Storage
Application 

Level Classes
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Tools

Business 
Rules
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User Interface
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As you can see, every subsystem ends up communicating directly with every other 
subsystem, which raises some important questions:

■ How many different parts of the system does a developer need to understand at 
least a little bit to change something in the graphics subsystem?

■ What happens when you try to use the business rules in another system?

■ What happens when you want to put a new user interface on the system, per-
haps a command-line UI for test purposes?

■ What happens when you want to put data storage on a remote machine? 

You might think of the lines between subsystems as being hoses with water running 
through them. If you want to reach in and pull out a subsystem, that subsystem is 
going to have some hoses attached to it. The more hoses you have to disconnect and 
reconnect, the more wet you’re going to get. You want to architect your system so that 
if you pull out a subsystem to use elsewhere, you won’t have many hoses to reconnect 
and those hoses will reconnect easily. 

With forethought, all of these issues can be addressed with little extra work. Allow 
communication between subsystems only on a “need to know” basis—and it had bet-
ter be a good reason. If in doubt, it’s easier to restrict communication early and relax it 
later than it is to relax it early and then try to tighten it up after you’ve coded several 
hundred intersubsystem calls. Figure 5-5 shows how a few communication guidelines 
could change the system depicted in Figure 5-4. 

Figure 5-5 With a few communication rules, you can simplify subsystem interactions sig-
nificantly. 

To keep the connections easy to understand and maintain, err on the side of simple 
intersubsystem relations. The simplest relationship is to have one subsystem call rou-
tines in another. A more involved relationship is to have one subsystem contain 
classes from another. The most involved relationship is to have classes in one sub-
system inherit from classes in another. 
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Graphics
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A good general rule is that a system-level diagram like Figure 5-5 should be an acyclic 
graph. In other words, a program shouldn’t contain any circular relationships in 
which Class A uses Class B, Class B uses Class C, and Class C uses Class A. 

On large programs and families of programs, design at the subsystem level makes a 
difference. If you believe that your program is small enough to skip subsystem-level 
design, at least make the decision to skip that level of design a conscious one.

Common Subsystems Some kinds of subsystems appear again and again in differ-
ent systems. Here are some of the usual suspects. 

Cross-Reference For more 
on simplifying business logic 
by expressing it in tables, see 
Chapter 18, "Table-Driven 
Methods."

Business rules Business rules are the laws, regulations, policies, and procedures 
that you encode into a computer system. If you’re writing a payroll system, you 
might encode rules from the IRS about the number of allowable withholdings and 
the estimated tax rate. Additional rules for a payroll system might come from a 
union contract specifying overtime rates, vacation and holiday pay, and so on. If 
you’re writing a program to quote automobile insurance rates, rules might come 
from government regulations on required liability coverages, actuarial rate tables, or 
underwriting restrictions

User interface Create a subsystem to isolate user-interface components so that the 
user interface can evolve without damaging the rest of the program. In most cases, a 
user-interface subsystem uses several subordinate subsystems or classes for the GUI 
interface, command line interface, menu operations, window management, help sys-
tem, and so forth.

Database access You can hide the implementation details of accessing a database so 
that most of the program doesn’t need to worry about the messy details of manipulat-
ing low-level structures and can deal with the data in terms of how it’s used at the 
business-problem level. Subsystems that hide implementation details provide a valu-
able level of abstraction that reduces a program’s complexity. They centralize data-
base operations in one place and reduce the chance of errors in working with the data. 
They make it easy to change the database design structure without changing most of 
the program.

System dependencies Package operating-system dependencies into a subsystem for 
the same reason you package hardware dependencies. If you’re developing a pro-
gram for Microsoft Windows, for example, why limit yourself to the Windows envi-
ronment? Isolate the Windows calls in a Windows-interface subsystem. If you later 
want to move your program to Mac OS or Linux, all you’ll have to change is the 
interface subsystem. An interface subsystem can be too extensive for you to imple-
ment on your own, but such subsystems are readily available in any of several com-
mercial code libraries. 
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Level 3: Division into Classes

Further Reading For a good 
discussion of database 
design, see Agile Database 
Techniques (Ambler 2003). 

Design at this level includes identifying all classes in the system. For example, a data-
base-interface subsystem might be further partitioned into data access classes and 
persistence framework classes as well as database metadata. Figure 5-2, Level 3, 
shows how one of Level 2’s subsystems might be divided into classes, and it implies 
that the other three subsystems shown at Level 2 are also decomposed into classes.

Details of the ways in which each class interacts with the rest of the system are also 
specified as the classes are specified. In particular, the class’s interface is defined. 
Overall, the major design activity at this level is making sure that all the subsystems 
have been decomposed to a level of detail fine enough that you can implement their 
parts as individual classes.

Cross-Reference For details 
on characteristics of high-
quality classes, see Chapter 
6, “Working Classes.”

The division of subsystems into classes is typically needed on any project that takes 
longer than a few days. If the project is large, the division is clearly distinct from the 
program partitioning of Level 2. If the project is very small, you might move directly 
from the whole-system view of Level 1 to the classes view of Level 3. 

Classes vs. Objects A key concept in object-oriented design is the differentiation 
between objects and classes. An object is any specific entity that exists in your pro-
gram at run time. A class is the static thing you look at in the program listing. An 
object is the dynamic thing with specific values and attributes you see when you run 
the program. For example, you could declare a class Person that had attributes of 
name, age, gender, and so on. At run time you would have the objects nancy, hank, 
diane, tony, and so on—that is, specific instances of the class. If you’re familiar with 
database terms, it’s the same as the distinction between “schema” and “instance.” You 
could think of the class as the cookie cutter and the object as the cookie. This book 
uses the terms informally and generally refers to classes and objects more or less inter-
changeably. 

Level 4: Division into Routines

Design at this level includes dividing each class into routines. The class interface 
defined at Level 3 will define some of the routines. Design at Level 4 will detail the 
class’s private routines. When you examine the details of the routines inside a class, 
you can see that many routines are simple boxes but a few are composed of hierarchi-
cally organized routines, which require still more design. 

The act of fully defining the class’s routines often results in a better understanding of 
the class’s interface, and that causes corresponding changes to the interface—that is, 
changes back at Level 3. 

This level of decomposition and design is often left up to the individual programmer, 
and it’s needed on any project that takes more than a few hours. It doesn’t need to be 
done formally, but it at least needs to be done mentally. 
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Level 5: Internal Routine Design

Cross-Reference For details 
on creating high-quality rou-
tines, see Chapter 7, “High-
Quality Routines,” and Chap-
ter 8, “Defensive Program-
ming.”

Design at the routine level consists of laying out the detailed functionality of the indi-
vidual routines. Internal routine design is typically left to the individual programmer 
working on an individual routine. The design consists of activities such as writing 
pseudocode, looking up algorithms in reference books, deciding how to organize the 
paragraphs of code in a routine, and writing programming-language code. This level 
of design is always done, though sometimes it’s done unconsciously and poorly 
rather than consciously and well. In Figure 5-2, design at this level is marked with a 5.

5.3 Design Building Blocks: Heuristics
Software developers tend to like our answers cut and dried: “Do A, B, and C, and X, Y, 
Z will follow every time.” We take pride in learning arcane sets of steps that produce 
desired effects, and we become annoyed when instructions don’t work as advertised. 
This desire for deterministic behavior is highly appropriate to detailed computer pro-
gramming, where that kind of strict attention to detail makes or breaks a program. But 
software design is a much different story. 

Because design is nondeterministic, skillful application of an effective set of heuristics 
is the core activity in good software design. The following subsections describe a num-
ber of heuristics—ways to think about a design that sometime produce good design 
insights. You might think of heuristics as the guides for the trials in “trial and error.” 
You undoubtedly have run across some of these before. Consequently, the following 
subsections describe each of the heuristics in terms of Software’s Primary Technical 
Imperative: managing complexity. 

Find Real-World Objects
Ask not first what the system 
does; ask WHAT it does it to! 
—Bertrand Meyer

The first and most popular approach to identifying design alternatives is the “by the 
book” object-oriented approach, which focuses on identifying real-world and syn-
thetic objects. 

The steps in designing with objects are

Cross-Reference For more 
details on designing using 
classes, see Chapter 6, 
“Working Classes.”

■ Identify the objects and their attributes (methods and data).

■ Determine what can be done to each object.

■ Determine what each object is allowed to do to other objects.

■ Determine the parts of each object that will be visible to other objects—which 
parts will be public and which will be private.

■ Define each object’s public interface.
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These steps aren’t necessarily performed in order, and they’re often repeated. Iteration 
is important. Each of these steps is summarized below.

Identify the objects and their attributes Computer programs are usually based on 
real-world entities. For example, you could base a time-billing system on real-world 
employees, clients, timecards, and bills. Figure 5-6 shows an object-oriented view of 
such a billing system.

Figure 5-6 This billing system is composed of four major objects. The objects have been 
simplified for this example. 

Identifying the objects’ attributes is no more complicated than identifying the objects 
themselves. Each object has characteristics that are relevant to the computer program. 
For example, in the time-billing system, an employee object has a name, a title, and a 
billing rate. A client object has a name, a billing address, and an account balance. A bill 
object has a billing amount, a client name, a billing date, and so on.

Objects in a graphical user interface system would include windows, dialog boxes, 
buttons, fonts, and drawing tools. Further examination of the problem domain might 
produce better choices for software objects than a one-to-one mapping to real-world 
objects, but the real-world objects are a good place to start.

Determine what can be done to each object A variety of operations can be per-
formed on each object. In the billing system shown in Figure 5-6, an employee object 
could have a change in title or billing rate, a client object could have its name or billing 
address changed, and so on.

Determine what each object is allowed to do to other objects This step is just what it 
sounds like. The two generic things objects can do to each other are containment and 
inheritance. Which objects can contain which other objects? Which objects can inherit 
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clientToBill
clientToBill

bills

GetHoursForMonth()
...
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billingAddress
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...

Timecard

hours
date
projectCode

1 1 1

* *

* 0..1

*

...

Bill

billDate
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...
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from which other objects? In Figure 5-6, a timecard object can contain an employee 
object and a client object, and a bill can contain one or more timecards. In addition, a 
bill can indicate that a client has been billed, and a client can enter payments against 
a bill. A more complicated system would include additional interactions.

Cross-Reference For details 
on classes and information 
hiding, see “Hide Secrets 
(Information Hiding)” in 
Section 5.3.

Determine the parts of each object that will be visible to other objects One of the key 
design decisions is identifying the parts of an object that should be made public and those 
that should be kept private. This decision has to be made for both data and methods.

Define each object’s interfaces Define the formal, syntactic, programming-language-
level interfaces to each object. The data and methods the object exposes to every other 
object is called the object’s “public interface.” The parts of the object that it exposes to 
derived objects via inheritance is called the object’s “protected interface.” Think about 
both kinds of interfaces.

When you finish going through the steps to achieve a top-level object-oriented system 
organization, you’ll iterate in two ways. You’ll iterate on the top-level system organiza-
tion to get a better organization of classes. You’ll also iterate on each of the classes 
you’ve defined, driving the design of each class to a more detailed level.

Form Consistent Abstractions

Abstraction is the ability to engage with a concept while safely ignoring some of its 
details—handling different details at different levels. Any time you work with an aggre-
gate, you’re working with an abstraction. If you refer to an object as a “house” rather 
than a combination of glass, wood, and nails, you’re making an abstraction. If you 
refer to a collection of houses as a “town,” you’re making another abstraction.

Base classes are abstractions that allow you to focus on common attributes of a set of 
derived classes and ignore the details of the specific classes while you’re working on 
the base class. A good class interface is an abstraction that allows you to focus on the 
interface without needing to worry about the internal workings of the class. The inter-
face to a well-designed routine provides the same benefit at a lower level of detail, and 
the interface to a well-designed package or subsystem provides that benefit at a higher 
level of detail. 

From a complexity point of view, the principal benefit of abstraction is that it allows 
you to ignore irrelevant details. Most real-world objects are already abstractions of 
some kind. As just mentioned, a house is an abstraction of windows, doors, siding, 
wiring, plumbing, insulation, and a particular way of organizing them. A door is in 
turn an abstraction of a particular arrangement of a rectangular piece of material with 
hinges and a doorknob. And the doorknob is an abstraction of a particular formation 
of brass, nickel, iron, or steel. 
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People use abstraction continuously. If you had to deal with individual wood fibers, 
varnish molecules, and steel molecules every time you used your front door, you’d 
hardly make it in or out of your house each day. As Figure 5-7 suggests, abstraction is 
a big part of how we deal with complexity in the real world. 

Figure 5-7 Abstraction allows you to take a simpler view of a complex concept. 

Cross-Reference For more 
details on abstraction in 
class design, see “Good 
Abstraction” in Section 6.2.

Software developers sometimes build systems at the wood-fiber, varnish-molecule, 
and steel-molecule level. This makes the systems overly complex and intellectually 
hard to manage. When programmers fail to provide larger programming abstractions, 
the system itself sometimes fails to make it through the front door. 

Good programmers create abstractions at the routine-interface level, class-interface 
level, and package-interface level—in other words, the doorknob level, door level, and 
house level—and that supports faster and safer programming. 

Encapsulate Implementation Details

Encapsulation picks up where abstraction leaves off. Abstraction says, “You’re allowed 
to look at an object at a high level of detail.” Encapsulation says, “Furthermore, you 
aren’t allowed to look at an object at any other level of detail.” 

Continuing with the housing-materials analogy: encapsulation is a way of saying that 
you can look at the outside of the house but you can’t get close enough to make out 
the door’s details. You are allowed to know that there’s a door, and you’re allowed to 
know whether the door is open or closed, but you’re not allowed to know whether the 
door is made of wood, fiberglass, steel, or some other material, and you’re certainly 
not allowed to look at each individual wood fiber. 

As Figure 5-8 suggests, encapsulation helps to manage complexity by forbidding you 
to look at the complexity. The section titled “Good Encapsulation” in Section 6.2 pro-
vides more background on encapsulation as it applies to class design.
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Figure 5-8 Encapsulation says that, not only are you allowed to take a simpler view of a 
complex concept, you are not allowed to look at any of the details of the complex concept. 
What you see is what you get—it’s all you get!

Inherit—When Inheritance Simplifies the Design

In designing a software system, you’ll often find objects that are much like other 
objects, except for a few differences. In an accounting system, for instance, you might 
have both full-time and part-time employees. Most of the data associated with both 
kinds of employees is the same, but some is different. In object-oriented program-
ming, you can define a general type of employee and then define full-time employees 
as general employees, except for a few differences, and part-time employees also as 
general employees, except for a few differences. When an operation on an employee 
doesn’t depend on the type of employee, the operation is handled as if the employee 
were just a general employee. When the operation depends on whether the employee 
is full-time or part-time, the operation is handled differently.

Defining similarities and differences among such objects is called “inheritance” 
because the specific part-time and full-time employees inherit characteristics from the 
general-employee type.

The benefit of inheritance is that it works synergistically with the notion of abstrac-
tion. Abstraction deals with objects at different levels of detail. Recall the door that 
was a collection of certain kinds of molecules at one level, a collection of wood fibers 
at the next, and something that keeps burglars out of your house at the next level. 
Wood has certain properties—for example, you can cut it with a saw or glue it with 
wood glue—and two-by-fours or cedar shingles have the general properties of wood as 
well as some specific properties of their own.

Inheritance simplifies programming because you write a general routine to handle 
anything that depends on a door’s general properties and then write specific routines 
to handle specific operations on specific kinds of doors. Some operations, such as 
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Open() or Close(), might apply regardless of whether the door is a solid door, interior 
door, exterior door, screen door, French door, or sliding glass door. The ability of a 
language to support operations like Open() or Close() without knowing until run time 
what kind of door you’re dealing with is called “polymorphism.” Object-oriented lan-
guages such as C++, Java, and later versions of Microsoft Visual Basic support inherit-
ance and polymorphism.

Inheritance is one of object-oriented programming’s most powerful tools. It can pro-
vide great benefits when used well, and it can do great damage when used naively. For 
details, see “Inheritance (“is a” Relationships)” in Section 6.3.

Hide Secrets (Information Hiding)

Information hiding is part of the foundation of both structured design and object-ori-
ented design. In structured design, the notion of “black boxes” comes from informa-
tion hiding. In object-oriented design, it gives rise to the concepts of encapsulation 
and modularity and it is associated with the concept of abstraction. Information hid-
ing is one of the seminal ideas in software development, and so this subsection 
explores it in depth. 

Information hiding first came to public attention in a paper published by David Par-
nas in 1972 called “On the Criteria to Be Used in Decomposing Systems Into Mod-
ules.” Information hiding is characterized by the idea of “secrets,” design and 
implementation decisions that a software developer hides in one place from the rest of 
a program. 

In the 20th Anniversary edition of The Mythical Man Month, Fred Brooks concluded 
that his criticism of information hiding was one of the few ways in which the first edi-
tion of his book was wrong. “Parnas was right, and I was wrong about information 
hiding,” he proclaimed (Brooks 1995). Barry Boehm reported that information hiding 
was a powerful technique for eliminating rework, and he pointed out that it was par-
ticularly effective in incremental, high-change environments (Boehm 1987).

Information hiding is a particularly powerful heuristic for Software’s Primary Techni-
cal Imperative because, beginning with its name and throughout its details, it empha-
sizes hiding complexity.

Secrets and the Right to Privacy

In information hiding, each class (or package or routine) is characterized by the 
design or construction decisions that it hides from all other classes. The secret might 
be an area that’s likely to change, the format of a file, the way a data type is imple-
mented, or an area that needs to be walled off from the rest of the program so that 
errors in that area cause as little damage as possible. The class’s job is to keep this 
information hidden and to protect its own right to privacy. Minor changes to a system 
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might affect several routines within a class, but they should not ripple beyond the 
class interface.

Strive for class interfaces 
that are complete and mini-
mal.
—Scott Meyers

One key task in designing a class is deciding which features should be known outside 
the class and which should remain secret. A class might use 25 routines and expose 
only 5 of them, using the other 20 internally. A class might use several data types and 
expose no information about them. This aspect of class design is also known as “visi-
bility” since it has to do with which features of the class are “visible” or “exposed” out-
side the class.

The interface to a class should reveal as little as possible about its inner workings. As 
shown in Figure 5-9, a class is a lot like an iceberg: seven-eighths is under water, and 
you can see only the one-eighth that’s above the surface.

Figure 5-9 A good class interface is like the tip of an iceberg, leaving most of the class 
unexposed.

Designing the class interface is an iterative process just like any other aspect of design. 
If you don’t get the interface right the first time, try a few more times until it stabilizes. 
If it doesn’t stabilize, you need to try a different approach.

An Example of Information Hiding

Suppose you have a program in which each object is supposed to have a unique ID 
stored in a member variable called id. One design approach would be to use integers 
for the IDs and to store the highest ID assigned so far in a global variable called 
g_maxId. As each new object is allocated, perhaps in each object’s constructor, you 
could simply use the id = ++g_maxId statement, which would guarantee a unique id, 
and it would add the absolute minimum of code in each place an object is created. 
What could go wrong with that? 
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A lot of things could go wrong. What if you want to reserve ranges of IDs for special 
purposes? What if you want to use nonsequential IDs to improve security? What if you 
want to be able to reuse the IDs of objects that have been destroyed? What if you want 
to add an assertion that fires when you allocate more IDs than the maximum number 
you’ve anticipated? If you allocated IDs by spreading id = ++g_maxId statements 
throughout your program, you would have to change code associated with every one 
of those statements. And, if your program is multithreaded, this approach won’t be 
thread-safe.

The way that new IDs are created is a design decision that you should hide. If you use 
the phrase ++g_maxId throughout your program, you expose the way a new ID is cre-
ated, which is simply by incrementing g_maxId. If instead you put the id = NewId() 
statement throughout your program, you hide the information about how new IDs are 
created. Inside the NewId() routine you might still have just one line of code, return 
( ++g_maxId ) or its equivalent, but if you later decide to reserve certain ranges of IDs 
for special purposes or to reuse old IDs, you could make those changes within the 
NewId() routine itself—without touching dozens or hundreds of id = NewId() state-
ments. No matter how complicated the revisions inside NewId() might become, they 
wouldn’t affect any other part of the program.

Now suppose you discover you need to change the type of the ID from an integer to a 
string. If you’ve spread variable declarations like int id throughout your program, your 
use of the NewId() routine won’t help. You’ll still have to go through your program 
and make dozens or hundreds of changes.

An additional secret to hide is the ID’s type. By exposing the fact that IDs are inte-
gers, you encourage programmers to perform integer operations like >, <, = on them. 
In C++, you could use a simple typedef to declare your IDs to be of IdType—a user-
defined type that resolves to int—rather than directly declaring them to be of type 
int. Alternatively, in C++ and other languages you could create a simple IdType class. 
Once again, hiding a design decision makes a huge difference in the amount of code 
affected by a change. 

Information hiding is useful at all levels of design, from the use of named constants 
instead of literals, to creation of data types, to class design, routine design, and sub-
system design. 

Two Categories of Secrets

Secrets in information hiding fall into two general camps:

■ Hiding complexity so that your brain doesn’t have to deal with it unless you’re 
specifically concerned with it

■ Hiding sources of change so that when change occurs, the effects are localized

KEY POINT
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Sources of complexity include complicated data types, file structures, boolean tests, 
involved algorithms, and so on. A comprehensive list of sources of change is described 
later in this chapter. 

Barriers to Information Hiding

Further Reading Parts of 
this section are adapted 
from “Designing Software 
for Ease of Extension and 
Contraction” (Parnas 1979).

In a few instances, information hiding is truly impossible, but most of the barriers to 
information hiding are mental blocks built up from the habitual use of other techniques.

Excessive distribution of information One common barrier to information hiding is 
an excessive distribution of information throughout a system. You might have hard-
coded the literal 100 throughout a system. Using 100 as a literal decentralizes refer-
ences to it. It’s better to hide the information in one place, in a constant 
MAX_EMPLOYEES perhaps, whose value is changed in only one place.

Another example of excessive information distribution is interleaving interaction with 
human users throughout a system. If the mode of interaction changes—say, from a 
GUI interface to a command line interface—virtually all the code will have to be mod-
ified. It’s better to concentrate user interaction in a single class, package, or subsystem 
you can change without affecting the whole system.

Cross-Reference For more 
on accessing global data 
through class interfaces, see 
“Using Access Routines 
Instead of Global Data” in 
Section 13.3. 

Yet another example would be a global data element—perhaps an array of employee 
data with 1000 elements maximum that’s accessed throughout a program. If the pro-
gram uses the global data directly, information about the data item’s implementa-
tion—such as the fact that it’s an array and has a maximum of 1000 elements—will be 
spread throughout the program. If the program uses the data only through access rou-
tines, only the access routines will know the implementation details.

Circular dependencies A more subtle barrier to information hiding is circular depen-
dencies, as when a routine in class A calls a routine in class B, and a routine in class B 
calls a routine in class A. 

Avoid such dependency loops. They make it hard to test a system because you can’t 
test either class A or class B until at least part of the other is ready. 

Class data mistaken for global data If you’re a conscientious programmer, one of 
the barriers to effective information hiding might be thinking of class data as global 
data and avoiding it because you want to avoid the problems associated with global 
data. While the road to programming hell is paved with global variables, class data 
presents far fewer risks.

Global data is generally subject to two problems: routines operate on global data without 
knowing that other routines are operating on it, and routines are aware that other rou-
tines are operating on the global data but they don’t know exactly what they’re doing to 
it. Class data isn’t subject to either of these problems. Direct access to the data is 
restricted to a few routines organized into a single class. The routines are aware that other 
routines operate on the data, and they know exactly which other routines they are.
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Of course, this whole discussion assumes that your system makes use of well-
designed, small classes. If your program is designed to use huge classes that contain 
dozens of routines each, the distinction between class data and global data will begin 
to blur and class data will be subject to many of the same problems as global data. 

Cross-Reference Code-level 
performance optimizations 
are discussed in Chapter 25, 
“Code-Tuning Strategies” 
and Chapter 26, “Code-Tun-
ing Techniques.”

Perceived performance penalties A final barrier to information hiding can be an 
attempt to avoid performance penalties at both the architectural and the coding levels. 
You don’t need to worry at either level. At the architectural level, the worry is unnec-
essary because architecting a system for information hiding doesn’t conflict with 
architecting it for performance. If you keep both information hiding and performance 
in mind, you can achieve both objectives.

The more common worry is at the coding level. The concern is that accessing data 
items indirectly incurs run-time performance penalties for additional levels of object 
instantiations, routine calls, and so on. This concern is premature. Until you can mea-
sure the system’s performance and pinpoint the bottlenecks, the best way to prepare 
for code-level performance work is to create a highly modular design. When you 
detect hot spots later, you can optimize individual classes and routines without affect-
ing the rest of the system.

Value of Information Hiding

Information hiding is one of the few theoretical techniques that has indisputably proven 
its value in practice, which has been true for a long time (Boehm 1987a). Large pro-
grams that use information hiding were found years ago to be easier to modify—by a fac-
tor of 4—than programs that don’t (Korson and Vaishnavi 1986). Moreover, information 
hiding is part of the foundation of both structured design and object-oriented design.

Information hiding has unique heuristic power, a unique ability to inspire effective 
design solutions. Traditional object-oriented design provides the heuristic power of 
modeling the world in objects, but object thinking wouldn’t help you avoid declaring 
the ID as an int instead of an IdType. The object-oriented designer would ask, “Should 
an ID be treated as an object?” Depending on the project’s coding standards, a “Yes” 
answer might mean that the programmer has to write a constructor, destructor, copy 
operator, and assignment operator; comment it all; and place it under configuration 
control. Most programmers would decide, “No, it isn’t worth creating a whole class 
just for an ID. I’ll just use ints.” 

Note what just happened. A useful design alternative, that of simply hiding the ID’s 
data type, was not even considered. If, instead, the designer had asked, “What about 
the ID should be hidden?” he might well have decided to hide its type behind a simple 
type declaration that substitutes IdType for int. The difference between object-oriented 
design and information hiding in this example is more subtle than a clash of explicit 
rules and regulations. Object-oriented design would approve of this design decision 
as much as information hiding would. Rather, the difference is one of heuristics—

1
2
3

HARD DATA
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thinking about information hiding inspires and promotes design decisions that think-
ing about objects does not. 

Information hiding can also be useful in designing a class’s public interface. The gap 
between theory and practice in class design is wide, and among many class designers 
the decision about what to put into a class’s public interface amounts to deciding 
what interface would be the most convenient to use, which usually results in exposing 
as much of the class as possible. From what I’ve seen, some programmers would 
rather expose all of a class’s private data than write 10 extra lines of code to keep the 
class’s secrets intact. 

Asking “What does this class need to hide?” cuts to the heart of the interface-design 
issue. If you can put a function or data into the class’s public interface without com-
promising its secrets, do. Otherwise, don’t. 

Asking about what needs to be hidden supports good design decisions at all levels. It 
promotes the use of named constants instead of literals at the construction level. It 
helps in creating good routine and parameter names inside classes. It guides decisions 
about class and subsystem decompositions and interconnections at the system level. 

Get into the habit of asking “What should I hide?” You’ll be surprised at how many dif-
ficult design issues dissolve before your eyes.

Identify Areas Likely to Change
Further Reading The 
approach described in this 
section is adapted from 
“Designing Software for Ease 
of Extension and Contrac-
tion” (Parnas 1979).

A study of great designers found that one attribute they had in common was their abil-
ity to anticipate change (Glass 1995). Accommodating changes is one of the most 
challenging aspects of good program design. The goal is to isolate unstable areas so 
that the effect of a change will be limited to one routine, class, or package. Here are the 
steps you should follow in preparing for such perturbations.

1. Identify items that seem likely to change. If the requirements have been done 
well, they include a list of potential changes and the likelihood of each change. 
In such a case, identifying the likely changes is easy. If the requirements don’t 
cover potential changes, see the discussion that follows of areas that are likely to 
change on any project.

2. Separate items that are likely to change. Compartmentalize each volatile com-
ponent identified in step 1 into its own class or into a class with other volatile 
components that are likely to change at the same time.

3. Isolate items that seem likely to change. Design the interclass interfaces to be 
insensitive to the potential changes. Design the interfaces so that changes are 
limited to the inside of the class and the outside remains unaffected. Any other 
class using the changed class should be unaware that the change has occurred. 
The class’s interface should protect its secrets.

KEY POINT
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Here are a few areas that are likely to change:

Cross-Reference One of the 
most powerful techniques 
for anticipating change is to 
use table-driven methods. 
For details, see Chapter 18, 
“Table-Driven Methods.” 

Business rules Business rules tend to be the source of frequent software changes. 
Congress changes the tax structure, a union renegotiates its contract, or an insurance 
company changes its rate tables. If you follow the principle of information hiding, 
logic based on these rules won’t be strewn throughout your program. The logic will 
stay hidden in a single dark corner of the system until it needs to be changed.

Hardware dependencies Examples of hardware dependencies include interfaces to 
screens, printers, keyboards, mice, disk drives, sound facilities, and communications 
devices. Isolate hardware dependencies in their own subsystem or class. Isolating 
such dependencies helps when you move the program to a new hardware environ-
ment. It also helps initially when you’re developing a program for volatile hardware. 
You can write software that simulates interaction with specific hardware, have the 
hardware-interface subsystem use the simulator as long as the hardware is unstable or 
unavailable, and then unplug the hardware-interface subsystem from the simulator 
and plug the subsystem into the hardware when it’s ready to use.

Input and output At a slightly higher level of design than raw hardware interfaces, 
input/output is a volatile area. If your application creates its own data files, the file for-
mat will probably change as your application becomes more sophisticated. User-level 
input and output formats will also change—the positioning of fields on the page, the 
number of fields on each page, the sequence of fields, and so on. In general, it’s a good 
idea to examine all external interfaces for possible changes.

Nonstandard language features Most language implementations contain handy, 
nonstandard extensions. Using the extensions is a double-edged sword because they 
might not be available in a different environment, whether the different environment 
is different hardware, a different vendor’s implementation of the language, or a new 
version of the language from the same vendor. 

If you use nonstandard extensions to your programming language, hide those exten-
sions in a class of their own so that you can replace them with your own code when 
you move to a different environment. Likewise, if you use library routines that aren’t 
available in all environments, hide the actual library routines behind an interface that 
works just as well in another environment.

Difficult design and construction areas It’s a good idea to hide difficult design and 
construction areas because they might be done poorly and you might need to do them 
again. Compartmentalize them and minimize the impact their bad design or construc-
tion might have on the rest of the system.

Status variables Status variables indicate the state of a program and tend to be 
changed more frequently than most other data. In a typical scenario, you might origi-
nally define an error-status variable as a boolean variable and decide later that it 
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would be better implemented as an enumerated type with the values ErrorType_None, 
ErrorType_Warning, and ErrorType_Fatal.

You can add at least two levels of flexibility and readability to your use of status vari-
ables:

■ Don’t use a boolean variable as a status variable. Use an enumerated type 
instead. It’s common to add a new state to a status variable, and adding a new 
type to an enumerated type requires a mere recompilation rather than a major 
revision of every line of code that checks the variable.

■ Use access routines rather than checking the variable directly. By checking the 
access routine rather than the variable, you allow for the possibility of more 
sophisticated state detection. For example, if you wanted to check combinations 
of an error-state variable and a current-function-state variable, it would be easy 
to do if the test were hidden in a routine and hard to do if it were a complicated 
test hard-coded throughout the program.

Data-size constraints When you declare an array of size 100, you’re exposing infor-
mation to the world that the world doesn’t need to see. Defend your right to privacy! 
Information hiding isn’t always as complicated as a whole class. Sometimes it’s as sim-
ple as using a named constant such as MAX_EMPLOYEES to hide a 100.

Anticipating Different Degrees of Change

Cross-Reference This sec-
tion’s approach to anticipat-
ing change does not involve 
designing ahead or coding 
ahead. For a discussion of 
those practices, see “A pro-
gram contains code that 
seems like it might be needed 
someday” in Section 24.2.

When thinking about potential changes to a system, design the system so that the 
effect or scope of the change is proportional to the chance that the change will occur. 
If a change is likely, make sure that the system can accommodate it easily. Only 
extremely unlikely changes should be allowed to have drastic consequences for more 
than one class in a system. Good designers also factor in the cost of anticipating 
change. If a change is not terribly likely but easy to plan for, you should think harder 
about anticipating it than if it isn’t very likely and is difficult to plan for. 

Further Reading This dis-
cussion draws on the 
approach described in “On 
the design and development 
of program families” (Parnas 
1976). 

A good technique for identifying areas likely to change is first to identify the minimal 
subset of the program that might be of use to the user. The subset makes up the core 
of the system and is unlikely to change. Next, define minimal increments to the sys-
tem. They can be so small that they seem trivial. As you consider functional changes, 
be sure also to consider qualitative changes: making the program thread-safe, making 
it localizable, and so on. These areas of potential improvement constitute potential 
changes to the system; design these areas using the principles of information hiding. 
By identifying the core first, you can see which components are really add-ons and 
then extrapolate and hide improvements from there.
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Keep Coupling Loose

Coupling describes how tightly a class or routine is related to other classes or rou-
tines. The goal is to create classes and routines with small, direct, visible, and flexible 
relations to other classes and routines, which is known as “loose coupling.” The con-
cept of coupling applies equally to classes and routines, so for the rest of this discus-
sion I’ll use the word “module” to refer to both classes and routines. 

Good coupling between modules is loose enough that one module can easily be used 
by other modules. Model railroad cars are coupled by opposing hooks that latch 
when pushed together. Connecting two cars is easy—you just push the cars together. 
Imagine how much more difficult it would be if you had to screw things together, or 
connect a set of wires, or if you could connect only certain kinds of cars to certain 
other kinds of cars. The coupling of model railroad cars works because it’s as simple 
as possible. In software, make the connections among modules as simple as possible.

Try to create modules that depend little on other modules. Make them detached, as 
business associates are, rather than attached, as Siamese twins are. A routine like sin() 
is loosely coupled because everything it needs to know is passed in to it with one 
value representing an angle in degrees. A routine such as InitVars( var 1, var2, var3, ..., 
varN ) is more tightly coupled because, with all the variables it must pass, the calling 
module practically knows what is happening inside InitVars(). Two classes that 
depend on each other’s use of the same global data are even more tightly coupled.

Coupling Criteria

Here are several criteria to use in evaluating coupling between modules: 

Size Size refers to the number of connections between modules. With coupling, 
small is beautiful because it’s less work to connect other modules to a module that has 
a smaller interface. A routine that takes one parameter is more loosely coupled to 
modules that call it than a routine that takes six parameters. A class with four well-
defined public methods is more loosely coupled to modules that use it than a class 
that exposes 37 public methods. 

Visibility Visibility refers to the prominence of the connection between two mod-
ules. Programming is not like being in the CIA; you don’t get credit for being sneaky. 
It’s more like advertising; you get lots of credit for making your connections as blatant 
as possible. Passing data in a parameter list is making an obvious connection and is 
therefore good. Modifying global data so that another module can use that data is a 
sneaky connection and is therefore bad. Documenting the global-data connection 
makes it more obvious and is slightly better.

Flexibility Flexibility refers to how easily you can change the connections between 
modules. Ideally, you want something more like the USB connector on your computer 
than like bare wire and a soldering gun. Flexibility is partly a product of the other 
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coupling characteristics, but it’s a little different too. Suppose you have a routine that 
looks up the amount of vacation an employee receives each year, given a hiring date and 
a job classification. Name the routine LookupVacationBenefit(). Suppose in another 
module you have an employee object that contains the hiring date and the job classifica-
tion, among other things, and that module passes the object to LookupVacationBenefit().

From the point of view of the other criteria, the two modules would look loosely cou-
pled. The employee connection between the two modules is visible, and there’s only 
one connection. Now suppose that you need to use the LookupVacationBenefit() mod-
ule from a third module that doesn’t have an employee object but that does have a hir-
ing date and a job classification. Suddenly LookupVacationBenefit() looks less friendly, 
unwilling to associate with the new module.

For the third module to use LookupVacationBenefit(), it has to know about the 
Employee class. It could dummy up an employee object with only two fields, but that 
would require internal knowledge of LookupVacationBenefit(), namely that those are 
the only fields it uses. Such a solution would be a kludge, and an ugly one. The second 
option would be to modify LookupVacationBenefit() so that it would take hiring date 
and job classification instead of employee. In either case, the original module turns out 
to be a lot less flexible than it seemed to be at first.

The happy ending to the story is that an unfriendly module can make friends if it’s 
willing to be flexible—in this case, by changing to take hiring date and job classifica-
tion specifically instead of employee.

In short, the more easily other modules can call a module, the more loosely coupled 
it is, and that’s good because it’s more flexible and maintainable. In creating a system 
structure, break up the program along the lines of minimal interconnectedness. If a 
program were a piece of wood, you would try to split it with the grain.

Kinds of Coupling

Here are the most common kinds of coupling you’ll encounter. 

Simple-data-parameter coupling Two modules are simple-data-parameter coupled if 
all the data passed between them are of primitive data types and all the data is passed 
through parameter lists. This kind of coupling is normal and acceptable. 

Simple-object coupling A module is simple-object coupled to an object if it instanti-
ates that object. This kind of coupling is fine. 

Object-parameter coupling Two modules are object-parameter coupled to each 
other if Object1 requires Object2 to pass it an Object3. This kind of coupling is tighter 
than Object1 requiring Object2 to pass it only primitive data types because it requires 
Object2 to know about Object3.
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Semantic coupling The most insidious kind of coupling occurs when one module 
makes use not of some syntactic element of another module but of some semantic 
knowledge of another module’s inner workings. Here are some examples:

■ Module1 passes a control flag to Module2 that tells Module2 what to do. This 
approach requires Module1 to make assumptions about the internal workings of 
Module2, namely what Module2 is going to do with the control flag. If Module2 
defines a specific data type for the control flag (enumerated type or object), this 
usage is probably OK.

■ Module2 uses global data after the global data has been modified by Module1. 
This approach requires Module2 to assume that Module1 has modified the data 
in the ways Module2 needs it to be modified, and that Module1 has been called at 
the right time.

■ Module1’s interface states that its Module1.Initialize() routine should be called 
before its Module1.Routine() is called. Module2 knows that Module1.Routine() 
calls Module1.Initialize() anyway, so it just instantiates Module1 and calls 
Module1.Routine() without calling Module1.Initialize() first.

■ Module1 passes Object to Module2. Because Module1 knows that Module2 uses 
only three of Object’s seven methods, it initializes Object only partially—with the 
specific data those three methods need.

■ Module1 passes BaseObject to Module2. Because Module2 knows that Module1 is 
really passing it DerivedObject, it casts BaseObject to DerivedObject and calls 
methods that are specific to DerivedObject.

Semantic coupling is dangerous because changing code in the used module can break 
code in the using module in ways that are completely undetectable by the compiler. 
When code like this breaks, it breaks in subtle ways that seem unrelated to the change 
made in the used module, which turns debugging into a Sisyphean task. 

The point of loose coupling is that an effective module provides an additional level of 
abstraction—once you write it, you can take it for granted. It reduces overall program 
complexity and allows you to focus on one thing at a time. If using a module requires 
you to focus on more than one thing at once—knowledge of its internal workings, 
modification to global data, uncertain functionality—the abstractive power is lost and 
the module’s ability to help manage complexity is reduced or eliminated. 

Classes and routines are first and foremost intellectual tools for reducing complexity. 
If they’re not making your job simpler, they’re not doing their jobs. 

KEY POINT



5.3 Design Building Blocks: Heuristics 103

Look for Common Design Patterns
cc2e.com/0585 Design patterns provide the cores of ready-made solutions that can be used to solve 

many of software’s most common problems. Some software problems require solutions 
that are derived from first principles. But most problems are similar to past problems, 
and those can be solved using similar solutions, or patterns. Common patterns include 
Adapter, Bridge, Decorator, Facade, Factory Method, Observor, Singleton, Strategy, and 
Template Method. The book Design Patterns by Erich Gamma, Richard Helm, Ralph 
Johnson, and John Vlissides (1995) is the definitive description of design patterns. 

Patterns provide several benefits that fully custom design doesn’t: 

Patterns reduce complexity by providing ready-made abstractions If you say, “This 
code uses a Factory Method to create instances of derived classes,” other program-
mers on your project will understand that your code involves a fairly rich set of inter-
relationships and programming protocols, all of which are invoked when you refer to 
the design pattern of Factory Method.

The Factory Method is a pattern that allows you to instantiate any class derived  from 
a specific base class without needing to keep track of the individual derived classes 
anywhere but the Factory Method. For a good discussion of the Factory Method pat-
tern, see “Replace Constructor with Factory Method” in Refactoring (Fowler 1999). 

You don’t have to spell out every line of code for other programmers to understand 
the design approach found in your code. 

Patterns reduce errors by institutionalizing details of common solutions Software 
design problems contain nuances that emerge fully only after the problem has been 
solved once or twice (or three times, or four times, or...). Because patterns represent 
standardized ways of solving common problems, they embody the wisdom accumu-
lated from years of attempting to solve those problems, and they also embody the cor-
rections to the false attempts that people have made in solving those problems. 

Using a design pattern is thus conceptually similar to using library code instead of 
writing your own. Sure, everybody has written a custom Quicksort a few times, but 
what are the odds that your custom version will be fully correct on the first try? Simi-
larly, numerous design problems are similar enough to past problems that you’re bet-
ter off using a prebuilt design solution than creating a novel solution. 

Patterns provide heuristic value by suggesting design alternatives A designer who’s 
familiar with common patterns can easily run through a list of patterns and ask 
“Which of these patterns fits my design problem?” Cycling through a set of familiar 
alternatives is immeasurably easier than creating a custom design solution out of 
whole cloth. And the code arising from a familiar pattern will also be easier for readers 
of the code to understand than fully custom code would be. 
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Patterns streamline communication by moving the design dialog to a higher level In 
addition to their complexity-management benefit, design patterns can accelerate 
design discussions by allowing designers to think and discuss at a larger level of gran-
ularity. If you say “I can’t decide whether I should use a Creator or a Factory Method 
in this situation,” you’ve communicated a great deal with just a few words—as long as 
you and your listener are both familiar with those patterns. Imagine how much longer 
it would take you to dive into the details of the code for a Creator pattern and the code 
for a Factory Method pattern and then compare and contrast the two approaches. 

If you’re not already familiar with design patterns, Table 5-1 summarizes some of the 
most common patterns to stimulate your interest. 

If you haven’t seen design patterns before, your reaction to the descriptions in Table 5-
1 might be “Sure, I already know most of these ideas.” That reaction is a big part of 
why design patterns are valuable. Patterns are familiar to most experienced program-
mers, and assigning recognizable names to them supports efficient and effective com-
munication about them. 

Table 5-1 Popular Design Patterns

Pattern Description

Abstract Factory Supports creation of sets of related objects by specifying the kind 
of set but not the kinds of each specific object.

Adapter Converts the interface of a class to a different interface.

Bridge Builds an interface and an implementation in such a way that 
either can vary without the other varying.

Composite Consists of an object that contains additional objects of its own 
type so that client code can interact with the top-level object and 
not concern itself with all the detailed objects. 

Decorator Attaches responsibilities to an object dynamically, without creating 
specific subclasses for each possible configuration of responsibilities.

Facade Provides a consistent interface to code that wouldn’t otherwise 
offer a consistent interface.

Factory Method Instantiates classes derived  from a specific base class without 
needing to keep track of the individual derived classes anywhere 
but the Factory Method. 

Iterator A server object that provides access to each element in a set 
sequentially.

Observer Keeps multiple objects in synch with one another by making an 
object responsible for notifying the set of related objects about 
changes to any member of the set.

Singleton Provides global access to a class that has one and only one instance.

Strategy Defines a set of algorithms or behaviors that are dynamically 
interchangeable with each other.

Template Method Defines the structure of an algorithm but leaves some of the 
detailed implementation to subclasses. 
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One potential trap with patterns is force-fitting code to use a pattern. In some cases, shift-
ing code slightly to conform to a well-recognized pattern will improve understandability 
of the code. But if the code has to be shifted too far, forcing it to look like a standard pat-
tern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a pattern because of a desire 
to try out a pattern rather than because the pattern is an appropriate design solution. 

Overall, design patterns are a powerful tool for managing complexity. You can read more 
detailed descriptions in any of the good books that are listed at the end of this chapter. 

Other Heuristics

The preceding sections describe the major software design heuristics. Following are a few 
other heuristics that might not be useful quite as often but are still worth mentioning.

Aim for Strong Cohesion

Cohesion arose from structured design and is usually discussed in the same context 
as coupling. Cohesion refers to how closely all the routines in a class or all the code in 
a routine support a central purpose—how focused the class is. Classes that contain 
strongly related functionality are described as having strong cohesion, and the heuris-
tic goal is to make cohesion as strong as possible. Cohesion is a useful tool for manag-
ing complexity because the more that code in a class supports a central purpose, the 
more easily your brain can remember everything the code does. 

Thinking about cohesion at the routine level has been a useful heuristic for decades 
and is still useful today. At the class level, the heuristic of cohesion has largely been 
subsumed by the broader heuristic of well-defined abstractions, which was discussed 
earlier in this chapter and in Chapter 6. Abstractions are useful at the routine level, 
too, but on a more even footing with cohesion at that level of detail.

Build Hierarchies

A hierarchy is a tiered information structure in which the most general or abstract rep-
resentation of concepts is contained at the top of the hierarchy, with increasingly 
detailed, specialized representations at the hierarchy’s lower levels. In software, 
hierarchies are found in class hierarchies, and, as Level 4 in Figure 5-2 illustrated, in 
routine-calling hierarchies as well. 

Hierarchies have been an important tool for managing complex sets of information for 
at least 2000 years. Aristotle used a hierarchy to organize the animal kingdom. 
Humans frequently use outlines to organize complex information (like this book). 
Researchers have found that people generally find hierarchies to be a natural way to 
organize complex information. When they draw a complex object such as a house, 
they draw it hierarchically. First they draw the outline of the house, then the windows 
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and doors, and then more details. They don’t draw the house brick by brick, shingle 
by shingle, or nail by nail (Simon 1996). 

Hierarchies are a useful tool for achieving Software’s Primary Technical Imperative 
because they allow you to focus on only the level of detail you’re currently concerned 
with. The details don’t go away completely; they’re simply pushed to another level so 
that you can think about them when you want to rather than thinking about all the 
details all of the time.

Formalize Class Contracts

Cross-Reference For more 
on contracts, see “Use asser-
tions to document and verify 
preconditions and postcon-
ditions” in Section 8.2.

At a more detailed level, thinking of each class’s interface as a contract with the rest of 
the program can yield good insights. Typically, the contract is something like “If you 
promise to provide data x, y, and z and you promise they’ll have characteristics a, b, 
and c, I promise to perform operations 1, 2, and 3 within constraints 8, 9, and 10.” The 
promises the clients of the class make to the class are typically called “preconditions,” 
and the promises the object makes to its clients are called the “postconditions.” 

Contracts are useful for managing complexity because, at least in theory, the object can 
safely ignore any noncontractual behavior. In practice, this issue is much more difficult. 

Assign Responsibilities

Another heuristic is to think through how responsibilities should be assigned to 
objects. Asking what each object should be responsible for is similar to asking what 
information it should hide, but I think it can produce broader answers, which gives 
the heuristic unique value. 

Design for Test

A thought process that can yield interesting design insights is to ask what the system will 
look like if you design it to facilitate testing. Do you need to separate the user interface 
from the rest of the code so that you can exercise it independently? Do you need to orga-
nize each subsystem so that it minimizes dependencies on other subsystems? Designing 
for test tends to result in more formalized class interfaces, which is generally beneficial. 

Avoid Failure

Civil engineering professor Henry Petroski wrote an interesting book, Design Paradigms: 
Case Histories of Error and Judgment in Engineering (Petroski 1994), that chronicles the 
history of failures in bridge design. Petroski argues that many spectacular bridge failures 
have occurred because of focusing on previous successes and not adequately consider-
ing possible failure modes. He concludes that failures like the Tacoma Narrows bridge 
could have been avoided if the designers had carefully considered the ways the bridge 
might fail and not just copied the attributes of other successful designs. 
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The high-profile security lapses of various well-known systems the past few years 
make it hard to disagree that we should find ways to apply Petroski’s design-failure 
insights to software. 

Choose Binding Time Consciously

Cross-Reference For more 
on binding time, see Section 
10.6, “Binding Time.” 

Binding time refers to the time a specific value is bound to a variable. Code that binds 
early tends to be simpler, but it also tends to be less flexible. Sometimes you can get a 
good design insight from asking questions like these: What if I bound these values 
earlier? What if I bound these values later? What if I initialized this table right here in 
the code? What if I read the value of this variable from the user at run time?

Make Central Points of Control

P.J. Plauger says his major concern is “The Principle of One Right Place—there should 
be One Right Place to look for any nontrivial piece of code, and One Right Place to 
make a likely maintenance change” (Plauger 1993). Control can be centralized in 
classes, routines, preprocessor macros, #include files—even a named constant is an 
example of a central point of control.

The reduced-complexity benefit is that the fewer places you have to look for some-
thing, the easier and safer it will be to change. 

Consider Using Brute Force

When in doubt, use brute 
force. 
—Butler Lampson

One powerful heuristic tool is brute force. Don’t underestimate it. A brute-force solu-
tion that works is better than an elegant solution that doesn’t work. It can take a long 
time to get an elegant solution to work. In describing the history of searching algo-
rithms, for example, Donald Knuth pointed out that even though the first description 
of a binary search algorithm was published in 1946, it took another 16 years for some-
one to publish an algorithm that correctly searched lists of all sizes (Knuth 1998). A 
binary search is more elegant, but a brute-force, sequential search is often sufficient. 

Draw a Diagram

Diagrams are another powerful heuristic tool. A picture is worth 1000 words—kind of. 
You actually want to leave out most of the 1000 words because one point of using a 
picture is that a picture can represent the problem at a higher level of abstraction. 
Sometimes you want to deal with the problem in detail, but other times you want to be 
able to work with more generality.

Keep Your Design Modular

Modularity’s goal is to make each routine or class like a “black box”: You know what 
goes in, and you know what comes out, but you don’t know what happens inside. A 
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black box has such a simple interface and such well-defined functionality that for any 
specific input you can accurately predict the corresponding output. 

The concept of modularity is related to information hiding, encapsulation, and other 
design heuristics. But sometimes thinking about how to assemble a system from a set 
of black boxes provides insights that information hiding and encapsulation don’t, so 
the concept is worth having in your back pocket.

Summary of Design Heuristics
More alarming, the same 
programmer is quite capa-
ble of doing the same task 
himself in two or three 
ways, sometimes uncon-
sciously, but quite often 
simply for a change, or to 
provide elegant variation. 
—A. R. Brown and W. A. 
Sampson

Here’s a summary of major design heuristics:

■ Find Real-World Objects

■ Form Consistent Abstractions

■ Encapsulate Implementation Details

■ Inherit When Possible

■ Hide Secrets (Information Hiding)

■ Identify Areas Likely to Change

■ Keep Coupling Loose

■ Look for Common Design Patterns

The following heuristics are sometimes useful too: 

■ Aim for Strong Cohesion

■ Build Hierarchies

■ Formalize Class Contracts

■ Assign Responsibilities

■ Design for Test

■ Avoid Failure

■ Choose Binding Time Consciously

■ Make Central Points of Control

■ Consider Using Brute Force

■ Draw a Diagram

■ Keep Your Design Modular



5.3 Design Building Blocks: Heuristics 109

Guidelines for Using Heuristics

Approaches to design in software can learn from approaches to design in other fields. 
One of the original books on heuristics in problem solving was G. Polya’s How to Solve 
It (1957). Polya’s generalized problem-solving approach focuses on problem solving 
in mathematics. Figure 5-10 is a summary of his approach, adapted from a similar 
summary in his book (emphases his).

cc2e.com/0592

Figure 5-10 G. Polya developed an approach to problem solving in mathematics that’s also 
useful in solving problems in software design (Polya 1957). 

1. Understanding the Problem. You have to understand the problem.

 What is the unknown? What are the data? What is the condition? Is it possible to satisfy 
the condition? Is the condition sufficient to determine the unknown? Or is it 
insufficient? Or redundant? Or contradictory? 
 Draw a figure. Introduce suitable notation. Separate the various parts of the 
condition. Can you write them down?

2. Devising a Plan. Find the connection between the data and the unknown. You 
might be obliged to consider auxiliary problems if you can't find an intermediate 
connection. You should eventually come up with a plan of the solution.

 Have you seen the problem before? Or have you seen the same problem in a 
slightly different form? Do you know a related problem? Do you know a theorem that 
could be useful? 
 Look at the unknown! And try to think of a familiar problem having the same or a 
similar unknown. Here is a problem related to yours and solved before. Can you use it? 
Can you use its result? Can you use its method? Should you introduce some auxiliary 
element in order to make its use possible? 
 Can you restate the problem? Can you restate it still differently? Go back to 
definitions. 
 If you cannot solve the proposed problem, try to solve some related problem first. 
Can you imagine a more accessible related problem? A more general problem? A 
more special problem? An analogous problem? Can you solve a part of the problem? 
Keep only a part of the condition, drop the other part; how far is the unknown then 
determined, how can it vary? Can you derive something useful from the data? Can 
you think of other data appropriate for determining the unknown? Can you change 
the unknown or the data, or both if necessary, so that the new unknown and the new 
data are nearer to each other? 
 Did you use all the data? Did you use the whole condition? Have you taken into 
account all essential notions involved in the problem?

3. Carrying out the Plan. Carry out your plan.

 Carrying out your plan of the solution, check each step. Can you see clearly that the 
step is correct? Can you prove that it's correct?

4. Looking Back. Examine the solution.

 Can you check the result? Can you check the argument? Can you derive the result 
differently? Can you see it at a glance? 
 Can you use the result, or the method, for some other problem?
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One of the most effective guidelines is not to get stuck on a single approach. If dia-
gramming the design in UML isn’t working, write it in English. Write a short test pro-
gram. Try a completely different approach. Think of a brute-force solution. Keep 
outlining and sketching with your pencil, and your brain will follow. If all else fails, 
walk away from the problem. Literally go for a walk, or think about something else 
before returning to the problem. If you’ve given it your best and are getting nowhere, 
putting it out of your mind for a time often produces results more quickly than sheer 
persistence can.

You don’t have to solve the whole design problem at once. If you get stuck, remember 
that a point needs to be decided but recognize that you don’t yet have enough infor-
mation to resolve that specific issue. Why fight your way through the last 20 percent 
of the design when it will drop into place easily the next time through? Why make bad 
decisions based on limited experience with the design when you can make good deci-
sions based on more experience with it later? Some people are uncomfortable if they 
don’t come to closure after a design cycle, but after you have created a few designs 
without resolving issues prematurely, it will seem natural to leave issues unresolved 
until you have more information (Zahniser 1992, Beck 2000).

5.4 Design Practices
The preceding section focused on heuristics related to design attributes—what you 
want the completed design to look like. This section describes design practice heuris-
tics, steps you can take that often produce good results. 

Iterate

You might have had an experience in which you learned so much from writing a pro-
gram that you wished you could write it again, armed with the insights you gained 
from writing it the first time. The same phenomenon applies to design, but the design 
cycles are shorter and the effects downstream are bigger, so you can afford to whirl 
through the design loop a few times.

Design is an iterative process. You don’t usually go from point A only to point B; you 
go from point A to point B and back to point A. 

As you cycle through candidate designs and try different approaches, you’ll look at 
both high-level and low-level views. The big picture you get from working with high-
level issues will help you to put the low-level details in perspective. The details you 
get from working with low-level issues will provide a foundation in solid reality for 
the high-level decisions. The tug and pull between top-level and bottom-level 

KEY POINT



5.4 Design Practices 111

considerations is a healthy dynamic; it creates a stressed structure that’s more stable 
than one built wholly from the top down or the bottom up.

Many programmers—many people, for that matter—have trouble ranging between high-
level and low-level considerations. Switching from one view of a system to another is 
mentally strenuous, but it’s essential to creating effective designs. For entertaining exer-
cises to enhance your mental flexibility, read Conceptual Blockbusting (Adams 2001), 
described in the “Additional Resources” section at the end of the chapter.

Cross-Reference Refactor-
ing is a safe way to try differ-
ent alternatives in code. For 
more on this, see Chapter 
24, "Refactoring."

When you come up with a first design attempt that seems good enough, don’t stop! 
The second attempt is nearly always better than the first, and you learn things on each 
attempt that can improve your overall design. After trying a thousand different mate-
rials for a light bulb filament with no success, Thomas Edison was reportedly asked if 
he felt his time had been wasted since he had discovered nothing. “Nonsense,” Edison 
is supposed to have replied. “I have discovered a thousand things that don’t work.” In 
many cases, solving the problem with one approach will produce insights that will 
enable you to solve the problem using another approach that’s even better.

Divide and Conquer

As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the details 
of a complex program, and that applies just as well to design. Divide the program into 
different areas of concern, and then tackle each of those areas individually. If you run 
into a dead end in one of the areas, iterate! 

Incremental refinement is a powerful tool for managing complexity. As Polya recom-
mended in mathematical problem solving, understand the problem, devise a plan, 
carry out the plan, and then look back to see how you did (Polya 1957). 

Top-Down and Bottom-Up Design Approaches

“Top down” and “bottom up” might have an old-fashioned sound, but they provide 
valuable insight into the creation of object-oriented designs. Top-down design begins 
at a high level of abstraction. You define base classes or other nonspecific design ele-
ments. As you develop the design, you increase the level of detail, identifying derived 
classes, collaborating classes, and other detailed design elements. 

Bottom-up design starts with specifics and works toward generalities. It typically 
begins by identifying concrete objects and then generalizes aggregations of objects 
and base classes from those specifics. 

Some people argue vehemently that starting with generalities and working toward 
specifics is best, and some argue that you can’t really identify general design principles 
until you’ve worked out the significant details. Here are the arguments on both sides. 
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Argument for Top Down

The guiding principle behind the top-down approach is the idea that the human brain 
can concentrate on only a certain amount of detail at a time. If you start with general 
classes and decompose them into more specialized classes step by step, your brain 
isn’t forced to deal with too many details at once. 

The divide-and-conquer process is iterative in a couple of senses. First, it’s iterative 
because you usually don’t stop after one level of decomposition. You keep going for 
several levels. Second, it’s iterative because you don’t usually settle for your first 
attempt. You decompose a program one way. At various points in the decomposition, 
you’ll have choices about which way to partition the subsystems, lay out the inherit-
ance tree, and form compositions of objects. You make a choice and see what hap-
pens. Then you start over and decompose it another way and see whether that works 
better. After several attempts, you’ll have a good idea of what will work and why.

How far do you decompose a program? Continue decomposing until it seems as if it 
would be easier to code the next level than to decompose it. Work until you become 
somewhat impatient at how obvious and easy the design seems. At that point, you’re 
done. If it’s not clear, work some more. If the solution is even slightly tricky for you 
now, it’ll be a bear for anyone who works on it later.

Argument for Bottom Up

Sometimes the top-down approach is so abstract that it’s hard to get started. If you 
need to work with something more tangible, try the bottom-up design approach. Ask 
yourself, “What do I know this system needs to do?” Undoubtedly, you can answer 
that question. You might identify a few low-level responsibilities that you can assign to 
concrete classes. For example, you might know that a system needs to format a partic-
ular report, compute data for that report, center its headings, display the report on the 
screen, print the report on a printer, and so on. After you identify several low-level 
responsibilities, you’ll usually start to feel comfortable enough to look at the top again.

In some other cases, major attributes of the design problem are dictated from the bot-
tom. You might have to interface with hardware devices whose interface requirements 
dictate large chunks of your design. 

Here are some things to keep in mind as you do bottom-up composition:

■ Ask yourself what you know the system needs to do.

■ Identify concrete objects and responsibilities from that question.

■ Identify common objects, and group them using subsystem organization, pack-
ages, composition within objects, or inheritance, whichever is appropriate.

■ Continue with the next level up, or go back to the top and try again to work down.



5.4 Design Practices 113

No Argument, Really

The key difference between top-down and bottom-up strategies is that one is a decom-
position strategy and the other is a composition strategy. One starts from the general 
problem and breaks it into manageable pieces; the other starts with manageable 
pieces and builds up a general solution. Both approaches have strengths and weak-
nesses that you’ll want to consider as you apply them to your design problems.

The strength of top-down design is that it’s easy. People are good at breaking some-
thing big into smaller components, and programmers are especially good at it. 

Another strength of top-down design is that you can defer construction details. Since 
systems are often perturbed by changes in construction details (for example, changes 
in a file structure or a report format), it’s useful to know early on that those details 
should be hidden in classes at the bottom of the hierarchy.

One strength of the bottom-up approach is that it typically results in early identifica-
tion of needed utility functionality, which results in a compact, well-factored design. If 
similar systems have already been built, the bottom-up approach allows you to start 
the design of the new system by looking at pieces of the old system and asking “What 
can I reuse?”

A weakness of the bottom-up composition approach is that it’s hard to use exclusively. 
Most people are better at taking one big concept and breaking it into smaller concepts 
than they are at taking small concepts and making one big one. It’s like the old assem-
ble-it-yourself problem: I thought I was done, so why does the box still have parts in it? 
Fortunately, you don’t have to use the bottom-up composition approach exclusively.

Another weakness of the bottom-up design strategy is that sometimes you find that 
you can’t build a program from the pieces you’ve started with. You can’t build an air-
plane from bricks, and you might have to work at the top before you know what kinds 
of pieces you need at the bottom.

To summarize, top down tends to start simple, but sometimes low-level complexity 
ripples back to the top, and those ripples can make things more complex than they 
really needed to be. Bottom up tends to start complex, but identifying that complexity 
early on leads to better design of the higher-level classes—if the complexity doesn’t tor-
pedo the whole system first!

In the final analysis, top-down and bottom-up design aren’t competing strategies—
they’re mutually beneficial. Design is a heuristic process, which means that no solu-
tion is guaranteed to work every time. Design contains elements of trial and error. Try 
a variety of approaches until you find one that works well. 
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Experimental Prototyping
cc2e.com/0599 Sometimes you can’t really know whether a design will work until you better under-

stand some implementation detail. You might not know if a particular database orga-
nization will work until you know whether it will meet your performance goals. You 
might not know whether a particular subsystem design will work until you select the 
specific GUI libraries you’ll be working with. These are examples of the essential 
“wickedness” of software design—you can’t fully define the design problem until 
you’ve at least partially solved it. 

A general technique for addressing these questions at low cost is experimental proto-
typing. The word “prototyping” means lots of different things to different people 
(McConnell 1996). In this context, prototyping means writing the absolute minimum 
amount of throwaway code that’s needed to answer a specific design question. 

Prototyping works poorly when developers aren’t disciplined about writing the abso-
lute minimum of code needed to answer a question. Suppose the design question is, 
“Can the database framework we’ve selected support the transaction volume we 
need?” You don’t need to write any production code to answer that question. You 
don’t even need to know the database specifics. You just need to know enough to 
approximate the problem space—number of tables, number of entries in the tables, 
and so on. You can then write very simple prototyping code that uses tables with 
names like Table1, Table2, and Column1, and Column2, populate the tables with junk 
data, and do your performance testing. 

Prototyping also works poorly when the design question is not specific enough. A 
design question like “Will this database framework work?” does not provide enough 
direction for prototyping. A design question like “Will this database framework sup-
port 1,000 transactions per second under assumptions X, Y, and Z?” provides a more 
solid basis for prototyping. 

A final risk of prototyping arises when developers do not treat the code as throwaway 
code. I have found that it is not possible for people to write the absolute minimum 
amount of code to answer a question if they believe that the code will eventually end 
up in the production system. They end up implementing the system instead of proto-
typing. By adopting the attitude that once the question is answered the code will be 
thrown away, you can minimize this risk. One way to avoid this problem is to create 
prototypes in a different technology than the production code. You could prototype a 
Java design in Python or mock up a user interface in Microsoft PowerPoint. If you do 
create prototypes using the production technology, a practical standard that can help 
is requiring that class names or package names for prototype code be prefixed with 
prototype. That at least makes a programmer think twice before trying to extend pro-
totype code (Stephens 2003). 
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Used with discipline, prototyping is the workhorse tool a designer has to combat design 
wickedness. Used without discipline, prototyping adds some wickedness of its own. 

Collaborative Design
Cross-Reference For more 
details on collaborative devel-
opment, see Chapter 21, 
“Collaborative Construction.”

In design, two heads are often better than one, whether those two heads are organized 
formally or informally. Collaboration can take any of several forms:

■ You informally walk over to a co-worker’s desk and ask to bounce some ideas 
around.

■ You and your co-worker sit together in a conference room and draw design alter-
natives on a whiteboard.

■ You and your co-worker sit together at the keyboard and do detailed design in 
the programming language you’re using—that is, you can use pair programming, 
described in Chapter 21, “Collaborative Construction.” 

■ You schedule a meeting to walk through your design ideas with one or more co-
workers.

■ You schedule a formal inspection with all the structure described in Chapter 21.

■ You don’t work with anyone who can review your work, so you do some initial 
work, put it into a drawer, and come back to it a week later. You will have forgot-
ten enough that you should be able to give yourself a fairly good review.

■ You ask someone outside your company for help: send questions to a special-
ized forum or newsgroup. 

If the goal is quality assurance, I tend to recommend the most structured review prac-
tice, formal inspections, for the reasons described in Chapter 21. But if the goal is to 
foster creativity and to increase the number of design alternatives generated, not just 
to find errors, less structured approaches work better. After you’ve settled on a specific 
design, switching to a more formal inspection might be appropriate, depending on 
the nature of your project. 

How Much Design Is Enough?
We try to solve the problem 
by rushing through the 
design process so that 
enough time is left at the 
end of the project to uncover 
the errors that were made 
because we rushed through 
the design process. 
—Glenford Myers

Sometimes only the barest sketch of an architecture is mapped out before coding 
begins. Other times, teams create designs at such a level of detail that coding 
becomes a mostly mechanical exercise. How much design should you do before you 
begin coding? 

A related question is how formal to make the design. Do you need formal, polished 
design diagrams, or would digital snapshots of a few drawings on a whiteboard be 
enough? 
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Deciding how much design to do before beginning full-scale coding and how much 
formality to use in documenting that design is hardly an exact science. The experience 
of the team, expected lifetime of the system, desired level of reliability, and size of 
project and team should all be considered. Table 5-2 summarizes how each of these 
factors influence the design approach. 

Two or more of these factors might come into play on any specific project, and in 
some cases the factors might provide contradictory advice. For example, you might 
have a highly experienced team working on safety critical software. In that case, you’d 
probably want to err on the side of the higher level of design detail and formality. In 
such cases, you’ll need to weigh the significance of each factor and make a judgment 
about what matters most. 

If the level of design is left to each individual, then, when the design descends to the 
level of a task that you’ve done before or to a simple modification or extension of such 
a task, you’re probably ready to stop designing and begin coding. 

Table 5-2 Design Formality and Level of Detail Needed

Factor

Level of Detail Needed 
in Design Before 
Construction

Documentation 
Formality

Design/construction team 
has deep experience in 
applications area.

Low Detail Low Formality

Design/construction team 
has deep experience but 
is inexperienced in the 
applications area.

Medium Detail Medium Formality

Design/construction team 
is inexperienced.

Medium to High Detail Low-Medium Formality

Design/construction team 
has moderate-to-high 
turnover.

Medium Detail —

Application is 
safety-critical.

High Detail High Formality

Application is 
mission-critical.

Medium Detail Medium-High Formality

Project is small. Low Detail Low Formality

Project is large. Medium Detail Medium Formality

Software is expected to 
have a short lifetime 
(weeks or months).

Low Detail Low Formality

Software is expected to 
have a long lifetime 
(months or years).

Medium Detail Medium Formality
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If I can’t decide how deeply to investigate a design before I begin coding, I tend to err 
on the side of going into more detail. The biggest design errors arise from cases in 
which I thought I went far enough, but it later turns out that I didn’t go far enough to 
realize there were additional design challenges. In other words, the biggest design 
problems tend to arise not from areas I knew were difficult and created bad designs 
for, but from areas I thought were easy and didn’t create any designs for at all. I rarely 
encounter projects that are suffering from having done too much design work. 

I've never met a human 
being who would want to 
read 17,000 pages of docu-
mentation, and if there was, 
I'd kill him to get him out of 
the gene pool. 
—Joseph Costello

On the other hand, occasionally I have seen projects that are suffering from too much 
design documentation. Gresham’s Law states that “programmed activity tends to drive 
out nonprogrammed activity” (Simon 1965). A premature rush to polish a design 
description is a good example of that law. I would rather see 80 percent of the design 
effort go into creating and exploring numerous design alternatives and 20 percent go 
into creating less polished documentation than to have 20 percent go into creating 
mediocre design alternatives and 80 percent go into polishing documentation of 
designs that are not very good. 

Capturing Your Design Work
cc2e.com/0506 The traditional approach to capturing design work is to write up the designs in a for-

mal design document. However, you can capture designs in numerous alternative 
ways that work well on small projects, informal projects, or projects that need a light-
weight way to record a design:

The bad news is that, in our 
opinion, we will never find the 
philosopher’s stone. We will 
never find a process that allows 
us to design software in a per-
fectly rational way. The good 
news is that we can fake it. 
—David Parnas and Paul 
Clements

Insert design documentation into the code itself Document key design decisions in 
code comments, typically in the file or class header. When you couple this approach 
with a documentation extractor like JavaDoc, this assures that design documentation 
will be readily available to a programmer working on a section of code, and it 
improves the chance that programmers will keep the design documentation reason-
ably up to date. 

Capture design discussions and decisions on a Wiki Have your design discussions 
in writing, on a project Wiki (that is, a collection of Web pages that can be edited eas-
ily by anyone on your project using a Web browser). This will capture your design dis-
cussions and decision automatically, albeit with the extra overhead of typing rather 
than talking. You can also use the Wiki to capture digital pictures to supplement the 
text discussion, links to websites that support the design decision, white papers, and 
other materials. This technique is especially useful if your development team is geo-
graphically distributed. 

Write e-mail summaries After a design discussion, adopt the practice of designating 
someone to write a summary of the discussion—especially what was decided—and send 
it to the project team. Archive a copy of the e-mail in the project’s public e-mail folder. 
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Use a digital camera One common barrier to documenting designs is the tedium of 
creating design drawings in some popular drawing tools. But the documentation 
choices are not limited to the two options of “capturing the design in a nicely format-
ted, formal notation” vs. “no design documentation at all.” 

Taking pictures of whiteboard drawings with a digital camera and then embedding 
those pictures into traditional documents can be a low-effort way to get 80 percent of 
the benefit of saving design drawings by doing about 1 percent of the work required 
if you use a drawing tool. 

Save design flip charts There’s no law that says your design documentation has to 
fit on standard letter-size paper. If you make your design drawings on large flip chart 
paper, you can simply archive the flip charts in a convenient location—or, better yet, 
post them on the walls around the project area so that people can easily refer to them 
and update them when needed. 

cc2e.com/0513 Use CRC (Class, Responsibility, Collaborator) cards Another low-tech alternative 
for documenting designs is to use index cards. On each card, designers write a class 
name, responsibilities of the class, and collaborators (other classes that cooperate 
with the class). A design group then works with the cards until they’re satisfied that 
they’ve created a good design. At that point, you can simply save the cards for future 
reference. Index cards are cheap, unintimidating, and portable, and they encourage 
group interaction (Beck 1991). 

Create UML diagrams at appropriate levels of detail One popular technique for 
diagramming designs is called Unified Modeling Language (UML), which is defined 
by the Object Management Group (Fowler 2004). Figure 5-6 earlier in this chapter 
was one example of a UML class diagram. UML provides a rich set of formalized rep-
resentations for design entities and relationships. You can use informal versions of 
UML to explore and discuss design approaches. Start with minimal sketches and add 
detail only after you’ve zeroed in on a final design solution. Because UML is standard-
ized, it supports common understanding in communicating design ideas and it can 
accelerate the process of considering design alternatives when working in a group. 

These techniques can work in various combinations, so feel free to mix and match these 
approaches on a project-by-project basis or even within different areas of a single project. 

5.5 Comments on Popular Methodologies
The history of design in software has been marked by fanatic advocates of wildly con-
flicting design approaches. When I published the first edition of Code Complete in the 
early 1990s, design zealots were advocating dotting every design i and crossing every 
design t before beginning coding. That recommendation didn’t make any sense. 



Additional Resources 119

People who preach software 
design as a disciplined activ-
ity spend considerable 
energy making us all feel 
guilty. We can never be 
structured enough or object-
oriented enough to achieve 
nirvana in this lifetime. We 
all truck around a kind of 
original sin from having 
learned Basic at an impres-
sionable age. But my bet is 
that most of us are better 
designers than the purists 
will ever acknowledge.
—P. J. Plauger

As I write this edition in the mid-2000s, some software swamis are arguing for not 
doing any design at all. “Big Design Up Front is BDUF,” they say. “BDUF is bad. You’re 
better off not doing any design before you begin coding!” 

In ten years the pendulum has swung from “design everything” to “design nothing.” 
But the alternative to BDUF isn’t no design up front, it’s a Little Design Up Front 
(LDUF) or Enough Design Up Front—ENUF. 

How do you tell how much is enough? That’s a judgment call, and no one can make 
that call perfectly. But while you can’t know the exact right amount of design with any 
confidence, two amounts of design are guaranteed to be wrong every time: designing 
every last detail and not designing anything at all. The two positions advocated by 
extremists on both ends of the scale turn out to be the only two positions that are 
always wrong!

As P.J. Plauger says, “The more dogmatic you are about applying a design method, the 
fewer real-life problems you are going to solve” (Plauger 1993). Treat design as a 
wicked, sloppy, heuristic process. Don’t settle for the first design that occurs to you. 
Collaborate. Strive for simplicity. Prototype when you need to. Iterate, iterate, and iter-
ate again. You’ll be happy with your designs. 

Additional Resources
cc2e.com/0520 Software design is a rich field with abundant resources. The challenge is identifying 

which resources will be most useful. Here are some suggestions.

Software Design, General

Weisfeld, Matt. The Object-Oriented Thought Process, 2d ed. SAMS, 2004. This is an 
accessible book that introduces object-oriented programming. If you’re already famil-
iar with object-oriented programming, you’ll probably want a more advanced book, 
but if you’re just getting your feet wet in object orientation, this book introduces fun-
damental object-oriented concepts, including objects, classes, interfaces, inheritance, 
polymorphism, overloading, abstract classes, aggregation and association, construc-
tors/destructors, exceptions, and others.

Riel, Arthur J. Object-Oriented Design Heuristics. Reading, MA: Addison-Wesley, 1996. 
This book is easy to read and focuses on design at the class level. 

Plauger, P. J. Programming on Purpose: Essays on Software Design. Englewood Cliffs, NJ: 
PTR Prentice Hall, 1993. I picked up as many tips about good software design from 
reading this book as from any other book I’ve read. Plauger is well-versed in a wide-
variety of design approaches, he’s pragmatic, and he’s a great writer. 



120 Chapter 5: Design in Construction

Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. New York, NY: Pren-
tice Hall PTR, 1997. Meyer presents a forceful advocacy of hard-core object-oriented 
programming.

Raymond, Eric S. The Art of UNIX Programming. Boston, MA: Addison-Wesley, 2004. 
This is a well-researched look at software design through UNIX-colored glasses. Section 
1.6 is an especially concise 12-page explanation of 17 key UNIX design principles.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis 
and Design and the Unified Process, 2d ed. Englewood Cliffs, NJ: Prentice Hall, 2001. 
This book is a popular introduction to object-oriented design in the context of the 
Unified Process. It also discusses object-oriented analysis.

Software Design Theory

Parnas, David L., and Paul C. Clements. “A Rational Design Process: How and Why to 
Fake It.” IEEE Transactions on Software Engineering SE-12, no. 2 (February 1986): 251–57. 
This classic article describes the gap between how programs are really designed and 
how you sometimes wish they were designed. The main point is that no one ever 
really goes through a rational, orderly design process but that aiming for it makes for 
better designs in the end.

I’m not aware of any comprehensive treatment of information hiding. Most software-
engineering textbooks discuss it briefly, frequently in the context of object-oriented 
techniques. The three Parnas papers listed below are the seminal presentations of the 
idea and are probably still the best resources on information hiding.

Parnas, David L. “On the Criteria to Be Used in Decomposing Systems into Modules.” 
Communications of the ACM 5, no. 12 (December 1972): 1053-58.

Parnas, David L. “Designing Software for Ease of Extension and Contraction.” IEEE 
Transactions on Software Engineering SE-5, no. 2 (March 1979): 128-38.

Parnas, David L., Paul C. Clements, and D. M. Weiss. “The Modular Structure of Com-
plex Systems.” IEEE Transactions on Software Engineering SE-11, no. 3 (March 1985): 
259-66.

Design Patterns

Gamma, Erich, et al. Design Patterns. Reading, MA: Addison-Wesley, 1995. This book 
by the “Gang of Four” is the seminal book on design patterns. 

Shalloway, Alan, and James R. Trott. Design Patterns Explained. Boston, MA: Addison-
Wesley, 2002.  This book contains an easy-to-read introduction to design patterns. 
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Design in General

Adams, James L. Conceptual Blockbusting: A Guide to Better Ideas, 4th ed. Cambridge, 
MA: Perseus Publishing, 2001. Although not specifically about software design, this 
book was written to teach design to engineering students at Stanford. Even if you 
never design anything, the book is a fascinating discussion of creative thought pro-
cesses. It includes many exercises in the kinds of thinking required for effective 
design. It also contains a well-annotated bibliography on design and creative thinking. 
If you like problem solving, you’ll like this book.

Polya, G. How to Solve It: A New Aspect of Mathematical Method, 2d ed. Princeton, NJ: 
Princeton University Press, 1957. This discussion of heuristics and problem solving 
focuses on mathematics but is applicable to software development. Polya’s book was 
the first written about the use of heuristics in mathematical problem solving. It draws 
a clear distinction between the messy heuristics used to discover solutions and the 
tidier techniques used to present them once they’ve been discovered. It’s not easy 
reading, but if you’re interested in heuristics, you’ll eventually read it whether you 
want to or not. Polya’s book makes it clear that problem solving isn’t a deterministic 
activity and that adherence to any single methodology is like walking with your feet in 
chains. At one time, Microsoft gave this book to all its new programmers.

Michalewicz, Zbigniew, and David B. Fogel. How to Solve It: Modern Heuristics. Berlin: 
Springer-Verlag, 2000. This is an updated treatment of Polya’s book that’s quite a bit 
easier to read and that also contains some nonmathematical examples. 

Simon, Herbert. The Sciences of the Artificial, 3d ed. Cambridge, MA: MIT Press, 1996. 
This fascinating book draws a distinction between sciences that deal with the natural 
world (biology, geology, and so on) and sciences that deal with the artificial world cre-
ated by humans (business, architecture, and computer science). It then discusses the 
characteristics of the sciences of the artificial, emphasizing the science of design. It has 
an academic tone and is well worth reading for anyone intent on a career in software 
development or any other “artificial” field.

Glass, Robert L. Software Creativity. Englewood Cliffs, NJ: Prentice Hall PTR, 1995. Is 
software development controlled more by theory or by practice? Is it primarily cre-
ative or is it primarily deterministic? What intellectual qualities does a software devel-
oper need? This book contains an interesting discussion of the nature of software 
development with a special emphasis on design. 

Petroski, Henry. Design Paradigms: Case Histories of Error and Judgment in Engineering. 
Cambridge: Cambridge University Press, 1994. This book draws heavily from the field of 
civil engineering (especially bridge design) to explain its main argument that successful 
design depends at least as much upon learning from past failures as from past successes. 
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Standards

IEEE Std 1016-1998, Recommended Practice for Software Design Descriptions. This docu-
ment contains the IEEE-ANSI standard for software-design descriptions. It describes 
what should be included in a software-design document.

IEEE Std 1471-2000. Recommended Practice for Architectural Description of Software Inten-
sive Systems. Los Alamitos, CA: IEEE Computer Society Press. This document is the 
IEEE-ANSI guide for creating software architecture specifications. 

cc2e.com/0527 CHECKLIST: Design in Construction
Design Practices

❑ Have you iterated, selecting the best of several attempts rather than the 
first attempt?

❑ Have you tried decomposing the system in several different ways to see 
which way will work best?

❑ Have you approached the design problem both from the top down and 
from the bottom up? 

❑ Have you prototyped risky or unfamiliar parts of the system, creating the 
absolute minimum amount of throwaway code needed to answer specific 
questions? 

❑ Has your design been reviewed, formally or informally, by others? 

❑ Have you driven the design to the point that its implementation seems 
obvious?

❑ Have you captured your design work using an appropriate technique such 
as a Wiki, e-mail, flip charts, digital photography, UML, CRC cards, or 
comments in the code itself? 

Design Goals
❑ Does the design adequately address issues that were identified and 

deferred at the architectural level?

❑ Is the design stratified into layers?

❑ Are you satisfied with the way the program has been decomposed into 
subsystems, packages, and classes?

❑ Are you satisfied with the way the classes have been decomposed into 
routines?

❑ Are classes designed for minimal interaction with each other?
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❑ Are classes and subsystems designed so that you can use them in other 
systems?

❑ Will the program be easy to maintain?

❑ Is the design lean? Are all of its parts strictly necessary?

❑ Does the design use standard techniques and avoid exotic, hard-to-under-
stand elements?

❑ Overall, does the design help minimize both accidental and essential 
complexity? 

Key Points
■ Software’s Primary Technical Imperative is managing complexity. This is greatly 

aided by a design focus on simplicity. 

■ Simplicity is achieved in two general ways: minimizing the amount of essential 
complexity that anyone’s brain has to deal with at any one time, and keeping 
accidental complexity from proliferating needlessly. 

■ Design is heuristic. Dogmatic adherence to any single methodology hurts cre-
ativity and hurts your programs. 

■ Good design is iterative; the more design possibilities you try, the better your 
final design will be.

■ Information hiding is a particularly valuable concept. Asking “What should I 
hide?” settles many difficult design issues. 

■ Lots of useful, interesting information on design is available outside this book. 
The perspectives presented here are just the tip of the iceberg.




