
CSE 403, Spring 2006, Alverson

Requirements and
Specifications

Pragmatic Programmer Tip: Don’t Gather
Requirements – Dig for them

Requirements rarely lie on the surface. They’re buried
deep beneath layers of assumptions, misconceptions,
and politics

CSE 403, Spring 2006, Alverson

Resources
“Rapid Development”, Steve McConnell
o Chapters 10, 14 (required)

“Pragmatic Programmer”, Hunt, Thomas
o Chapter 7 (recommended)

“Software Project Survival Guide”, Steve
McConnell
o Chapter 8 (optional)

Software Requirements Specification Template,
Use case papers, (on class web, Resources link)

CSE 403, Spring 2006, Alverson

Outline
What are requirements?
Some interesting requirements facts
How can we gather requirements?
How can we specify requirements?
Beware of scope creep

CSE 403, Spring 2006, Alverson

What are requirements?
% def requirement

n, something wanted or needed: necessity

• Requirements are features
necessary to deliver with the product
• Requirements are necessary
attributes of the product

CSE 403, Spring 2006, Alverson

Brainstorm!
What types of software project requirements can

you think of? General categories …

Examples requirements types:
• Feature set
• GUI
• Performance
• Reliability
• Expansibility (ie. support plug ins)
• Environment operates in (ie. HW, OS, browsers)
• Schedule

CSE 403, Spring 2006, Alverson

How do we gather requirements?
Let’s start with two facts:

Standish group survey of over 8000 projects, the
number one reason that projects succeed is
user involvement
Easy access to end users is one of three critical
success factors in rapid-development projects
(McConnell)

CSE 403, Spring 2006, Alverson

How do we gather requirements?

Why work with customers?
o Good relations improve development speed
o Improves perceived development speed
o They don’t always know what they want
o They do know what they want, and it changes

over time

Is the answer obvious?

Why?
Why?

Why?

CSE 403, Spring 2006, Alverson

Words of Wisdom 1

The most difficult part of requirements gathering is
not the act of recording what the users want; it is
the exploratory, development activity of helping
users figure out what they want.

McConnell, SG

CSE 403, Spring 2006, Alverson

Words of Wisdom 2

Work with a User to Think Like a User – it’s the
best way to get insight on how the system is
easily used

Pragmatic Programmer Tip

CSE 403, Spring 2006, Alverson

How can we work with our customers?
What can we do during the lifecycle stages of:

Planning

Requirements Analysis

Design

Construction

• select lifecycle
• identify real customer
• establish interaction method

• help customer determine what they want (ie.prototypes)
• videotape customers operating
• surveys, meetings, focus groups, discussions

• design for change

• implement to allow change
• show customer tangible signs of progress, phased delivery allowing feedback

CSE 403, Spring 2006, Alverson

And the results we expect?

Improved efficiency
Less Rework
Reduced Risk
Lack of friction Why?

Why?
Why?

Why?

CSE 403, Spring 2006, Alverson

Words of Wisdom 3

Throughout your travels with the customer, be sure
to set reasonable customer expectations

Why is this important?

CSE 403, Spring 2006, Alverson

Outline
What are requirements?
Some interesting requirements facts
How can we gather requirements?
How can we specify requirements?
Beware of scope creep

CSE 403, Spring 2006, Alverson

How can we specify requirements?
So… we’ve worked with the customer to

understand their needs, how do we capture
these requirements?

Ideas?

Possibilities include:
• Prototype
• Requirements Specification Document

• Use Cases
• Feature List

CSE 403, Spring 2006, Alverson

Prototype
Build a prototype to capture requirements
Extend until it demonstrates all the functional
areas of the system. Broad but shallow.
Develop a style guide that codifies the proto’s
look and feel
Proto is a baseline spec OR
Can write detailed end-user doc based on proto,
which becomes software spec

CSE 403, Spring 2006, Alverson

Use Cases
Capture a particular use of
the system
Describe how external agents
(actors) interact with the
system (use case)
Diagrams or textual
description

Online ordering system

Actor

Use cases

CSE 403, Spring 2006, Alverson

Another use-case example

•http://odl-skopje.etf.ukim.edu.mk/uml-help/html/02day12.html#ovde

CSE 403, Spring 2006, Alverson

Cockburn’s use case template

CSE 403, Spring 2006, Alverson

Example buy goods use case

Purchase request comes in- Trigger
…Main success scenario

Buyer- Primary actor
No goods to buyer, no $ to us- Failed end condition
Buyer has goods, we have $- Success end condition
We know buyer address- Preconditions

Buyer issues request to buy
product, expects delivery

- Goal
Characteristic Info

...

CSE 403, Spring 2006, Alverson

Feature List

Contents
•1 Look and feel
•2 Multimedia and
extensions
•3 Keeping track of edits
•4 Structures and syntax
•5 Editing
•6 Discussions
•7 Multilanguage support
•8 Backend
•9 Permissions
•10 Search and Queries
•11 Misc.
•12 Empty set of help pages
•13 Coming soon

List of features
together with a brief
description of their
function

WikiMedia Index to Feature List

CSE 403, Spring 2006, Alverson

Pulling it all together
How much is enough?

What are problems with over specifying?

What are problems with underspecifying?

You have to find a balance
• comprehensible vs. detailed correctness
• graphics vs. explicit wording and tables
• short and timely vs. complete and late

CSE 403, Spring 2006, Alverson

Words of Wisdom 4
Organize your specification by viewpoint or

category of requirements

Example:
Administrative functions

New account
Change password

Customer functions
Retrieve data
Edit data
Publish
Collaborative

Performance
Reliability

CSE 403, Spring 2006, Alverson

Words of Wisdom 5

After you create a specification, go over it to:
o Eliminate all requirements not absolutely necessary
o Simplify those that are more complicated than

necessary
o Substitute cheaper options when available
o Move non essentials to future releases

CSE 403, Spring 2006, Alverson

Outline
What are requirements?
Some interesting requirements facts
How can we gather requirements?
How can we specify requirements?
Beware of scope creep

CSE 403, Spring 2006, Alverson

Scope Creep
“The software was late and far over budget; in fact,

it almost didn’t make it out the door. And it bore
little resemblance to their original plans… Most
software-development stinks”

Wall Street Journal

Our analysis found that the average
requirements overrun on our projects is about
40%

Construx

CSE 403, Spring 2006, Alverson

How can you manage this?

Two strategies:
o Scope change document (nothing is free)

Analyze cost, impact, make tradeoffs
o Change control board

Your thoughts?

CSE 403, Spring 2006, Alverson

