Quality Assurance: Early Work Items

CSE 403
Lecture 21

Key Points
- Many different characteristics of quality
- Importance of having independent quality assurance from development
- The deliverable of QA is information
- Write it down
- QA is not free

What is the ‘value add’ of QA?
- Classic research: fixing a defect is cheaper the earlier you catch it
 - $: found in spec process
 - $$: found during implementation
 - $$$: found during post-implementation testing
 - $$$$: found in the field
 - Service packs, product recalls, lawsuits
 - Customer confidence

What is quality?
- ‘Make It Didn’t Happen’
 - The best bug is the one that was never born!
 - QA is about process
 - Design review
 - Implementation review
 - Structured testing and evaluation
 - Instrumentation/testability
 - Best practices
 - Lesson of History: good process leads to fewer defects

The deliverable of QA
- QA delivers information
 - What is known about the quality of the code?
 - What are the risks of known defects?
 - What is not known, i.e. untested?
 - What risks may arise from unknown defects?
 - E.g. “We didn’t test for malicious use”
 - “Bearer of bad news”
 - “Validation of the vision”
Scaling to the project
- Large project
 - Individual design/programming and QA teams
 - Another team to coordinate and administer
- Medium-sized project
 - QA often assumes coordination role
- Small/solo project
 - Develop ‘functional schizophrenia’
 - Write it down

Structure of QA
- Independence
- Authority
- Resources

What does QA do early in the development cycle?
- Publish (and promote) QA requirements
- Review design work
- Develop testing strategy

Establish QA Requirements
- Statement of requirements
- Feature specifications
- Implementation specifications
- Design change process
- Development schedule
- Build process
- Developer practice
- Defect process
- Release criteria

Design Change Process
- How are design changes documented?
 - DCR vs. “bug”
- How are change decisions made?
- When has “the ship sailed”? Design Freeze

Quality Assurance is about Information
- Specification and requirements
- If it’s not written
 - It’s forgotten
- Bug database is an asset
Development Schedule

- When will specs be complete?
- When will code be available?
- When will features be complete?
- When will code be stable?
- Beta releases?
- Leave enough time for the endgame:
 - Complete test pass on Release Candidate
 - Test of final installation media (may include digital signing, release notes)

Build Process

- Source control
 - Undo the 'oops
- Centralized build
 - Be sure everyone is testing the same bits
 - Avoid platform dependencies
 - How often are new builds generated?
 - Periodic
 - Event-Driven
- Configuration management

Developer Practice

- Private builds
- Buddy builds
- Code review
- Code analysis tools
- Unit testing

Defect Process

- Why are defects tracked?
- How are defects tracked?
- What is the lifecycle of a bug?
- How are defects prioritized?
- Controlled check-ins/triage process
- Defect analysis:
 - Defect source analysis
 - Root cause analysis

Measuring quality

- Is it possible to quantify software quality?

Release Criteria

- When are we done?
- Indicators of completeness:
 - Quantity of defects being found
 - Severity of defects being found
 - Completeness of testing
Review Design Work

- Are these documents sufficient to scope the project?
- Are they logically consistent?
- Is the project testable?
 - Test hooks, registry entries, compiler directives
 - Instrumentation
- Does the project address the stated requirements?

Review Design Work (con’t.)

- Evaluate use scenarios
 - Sensible control flows?
 - Features appropriate to use?
- Evaluate failure scenarios
 - Meaningful error feedback
 - Single points of failure
 - Cascading failures
- Understand dependencies

Costs of quality assurance

- Programmer Productivity
 - 8-20 LOC / day
- Building QA into the schedule