How do people interact with computers?
- Tremendous flexibility in designing/building interactions
- Look at physical objects
 - Thousands of years of design experience
 - Human side is the same

Design of Everyday Things
- Don Norman
 - Cognitive Scientist
 - Apple Fellow
 - Prolific writer
- Basic theme
 - Understand how common objects are used

Tradeoffs
- Recognize that there are engineering tradeoffs
- Avoid whininess
- Design is hard
 - It usually takes about five or six attempts to get a product right
 - Vast number of variables

Design examples
- Doors
 - Basic requirement – a user must be able to open the door and walk through it
 - What could go wrong?
 - Lack of visual cues
Saigon Deli – U. District

Telephones
- Basic dial / number pad is standard
- Mechanisms for additional functionality can be difficult
 - Arbitrary
 - Multifunction keys
 - No mental model

Stove Top

Automobiles
- Most design intensive product
- Usability critical for effectiveness, safety, and user satisfaction
- Main controls (steering, acceleration, braking)
 - Dedicated, direct response
- Secondary controls
 - Substantial variety

Conceptual models
- Mental model of how things work
 - Does not need to be correct, just predictive
- Don Norman – refrigerator / freezer temperature control
 - Thermostats
Affordance

- Perceived and actual properties of an object – especially the properties that determines how an object is used
 - A door affords going through
 - A chair affords sitting on
 - Glass affords seeing through (or breaking)
 - Doors – indication of how to open them
 - Light switches – indication of function

The principle of mapping

- Mental association between objects and actions
 - Some natural
 - Some cultural
 - Some arbitrary

The principle of feedback

- Indication that an operation is taking place
 - Key clicks
 - Sidetone in phones
 - Direct physical response when opening a door
 - Hour glass cursor on a long operation

Cognitive Load

- How little memory do we need?
 - Short term memory
 - Long term memory
- Avoid requiring arbitrary information
 - Visual information
 - Labels, Groupings, Mappings
 - Conventions
 - Transfer
 - Common experience
 - Conceptual models

Designing for Failure

- Design for fallible users
- Understand classes of errors
- Error minimization
- Error prevention
- Error mitigation
- Error recovery

Errors

- What is an error?
- What kinds of errors can be accommodated for by better design?
- Car related
 - I drive with my high beams on
 - I misuse the controls in an unfamiliar car in a pressure situation
 - I lock my keys in the car
 - I take the wrong exit off the freeway
Human Error

- Implicated in 60-80% of Automobile / Aviation accidents
- Major accidents often have multiple causes with human error in operation a significant factor
- Three Mile Island
 - Emergency light covered by maintenance tag
 - Lights suggested an open valve was shut
 - Operators faced with 100 alarms within 10 seconds of the first one
 - Computer printer registering alarms was two and a half hours behind alarms

Beginners, Experts, Intermediates

- Who are you designing for?

Case study
 Tablet PC Button Design

- Tablet PC Requirement
 - Support for Secure Attention Sequence (Ctrl-Alt-Del) without keyboard attached
 - Non-overloaded hardware mechanism
 - Large range of button formats (examples follow)
 - Pressure to include everybody’s favorite feature as a button

Motion Computing

Compaq

NEC