Administrivia

- Scanners due tomorrow, 11 pm – how’s it going? Questions?
 - Be sure to implement both kinds of comments
- Project discussion board, email: Wrong: “I am confused/have a question”
 Right: “we are confused/have a question” 😊

- Schedule:
 - Today and in sections tomorrow: LR parsing and LR parser construction
 - HW2 (LR parsers) out Friday, due Thursday next week
 - Next part of the project, Parser + AST visitors, out by Monday, due a week from Thursday
 - More details/examples in lecture and sections next week
 - Assignment/project/exam dates on schedule will stay as-is

- HW1 sample solutions: pick up a copy at end of class today
- HW1 grading: “regexp unrolling”? Where did that come from??
 - “Very clever, -1”
 - “Premature optimization is the root of all evil” – Knuth
Agenda

• LR(0) state construction
• FIRST, FOLLOW, and nullable
• Variations: SLR, LR(1), LALR
LR State Machine

• Idea: Build a DFA that recognizes handles
 – Language generated by a CFG is generally not regular, but
 – Language of handles for a CFG is regular
 • So a DFA can be used to recognize handles
 – LR Parser reduces when DFA accepts a handle
Prefixes, Handles, &c (review)

• If S is the start symbol of a grammar G,
 – If $S \Rightarrow^\ast \alpha$ then α is a *sentential form* of G
 – γ is a *viable prefix* of G if there is some derivation
 $S \Rightarrow^*_{rm} \alpha Aw \Rightarrow^*_{rm} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 – The occurrence of β in $\alpha \beta w$ is a *handle* of $\alpha \beta w$

• An *item* is a marked production (a . at some position in the right hand side)
 – $[A ::= . X Y]$ $[A ::= X . Y]$ $[A ::= X Y .]$
Building the LR(0) States

• Example grammar

 \[S' ::= S \$ \]

 \[S ::= (L) \]

 \[S ::= x \]

 \[L ::= S \]

 \[L ::= L , S \]

 – We add a production \(S' \) with the original start symbol followed by end of file (\$)

 • We accept if we reach the end of this production

 – Question: What language does this grammar generate?
Start of LR Parse

• Initially
 – Stack is empty
 – Input is the right hand side of S', i.e., S
 – Initial configuration is $[S' ::= . S]$
 – But, since position is just before S, we are also just before anything that can be derived from S

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L , S$
Initial state

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

\[
\begin{align*}
S' &::= . S$
S &::= . (L)
S &::= . x
\end{align*}
\]
Shift Actions (1)

• To shift past the x, add a new state with appropriate item(s), including their closure
 – In this case, a single item; the closure adds nothing
 – This state will lead to a reduction since no further shift is possible
Shift Actions (2)

- If we shift past the (, we are at the beginning of L
- The closure adds all productions that start with L, which also requires adding all productions starting with S

$S' ::= . S$
$S ::= . (L)$
$S ::= . x$

$S ::= (. L)$
$L ::= . L , S$
$L ::= . S$
$S ::= . (L)$
$S ::= . x$

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L , S$
Goto Actions

- Once we reduce S, we’ll pop the rhs from the stack exposing the first state. Add a \textit{goto} transition on S for this.
Basic Operations

• *Closure* (S)
 – Adds all items implied by items already in S

• *Goto* (I, X)
 – I is a set of items
 – X is a grammar symbol (terminal or non-terminal)
 – *Goto* moves the dot past the symbol X in all appropriate items in set I
Closure Algorithm

• $\text{Closure (S)} =$

 repeat
 for any item $[A ::= \alpha . B \beta]$ in S
 for all productions $B ::= \gamma$
 add $[B ::= . \gamma]$ to S
 until S does not change
 return S

• Classic example of a fixed-point algorithm
Goto Algorithm

- **Goto** \((I, X) = \)**

 set \(new\) to the empty set

 for each item \([A ::= \alpha . X . \beta] \) in \(I\)

 add \([A ::= \alpha X . \beta] \) to \(new\)

 return \(Closure\ (new)\)

- This may create a new state, or may return an existing one
LR(0) Construction

• First, augment the grammar with an extra start production $S' ::= S \$$
• Let T be the set of states
• Let E be the set of edges
• Initialize T to $\text{Closure} \ ([S' ::= . S \$])$
• Initialize E to empty
LR(0) Construction Algorithm

repeat
 for each state \(I \) in \(T \)
 for each item \([A ::= \alpha . \ X \ \beta] \) in \(I \)
 Let \(new \) be \(Goto(I, X) \)
 Add \(new \) to \(T \) if not present
 Add \(I \xrightarrow{X} new \) to \(E \) if not present
 until \(E \) and \(T \) do not change in this iteration

• Footnote: For symbol $\$, we don’t compute \(goto(I, \$); \) instead, we make this an accept action.
Example: States for

0. \(S' ::= S \)
1. \(S ::= (L) \)
2. \(S ::= x \)
3. \(L ::= S \)
4. \(L ::= L, S \)
Building the Parse Tables (1)

• For each edge $I \xrightarrow{X} J$

 – if X is a terminal, put s_j in column X, row I of the action table (shift to state j)

 – If X is a non-terminal, put g_j in column X, row I of the goto table
Building the Parse Tables (2)

• For each state \(I \) containing an item \([S' ::= S \cdot \$]\), put \(accept \) in column $ of row \(I \)
• Finally, for any state containing \([A ::= \gamma \cdot]\) put action \(rn \) (reduce) in every column of row \(I \) in the table, where \(n \) is the \emph{production} number
Example: Tables for

0. $S' ::= S\$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$
Where Do We Stand?

- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same
A Grammar that is not LR(0)

• Build the state machine and parse tables for a simple expression grammar

\[S ::= E \$
\]
\[E ::= T + E
\]
\[E ::= T
\]
\[T ::= x
\]
LR(0) Parser for

0. \(S ::= E \$
1. \(E ::= T + E \)
2. \(E ::= T \)
3. \(T ::= x \)

State 3 is has two possible actions on +
- shift 4, or reduce 2
- \(\therefore \) Grammar is not LR(0)
How can we solve conflicts like this?

• Idea: look at the next symbol after the handle before deciding whether to reduce

• Easiest: SLR – Simple LR. Reduce only if next input terminal symbol could follow resulting nonterminal

• More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a particular instance of a reduction
 – LALR used by YACC/Bison/CUP; we won’t examine in detail
SLR Parsers

• Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction; don’t reduce if the next input symbol can’t follow the resulting non-terminal

• We need to be able to compute FOLLOW(A) – the set of symbols that can follow A in any possible derivation
 – i.e., t is in FOLLOW(A) if any derivation contains At
 – To compute this, we need to compute FIRST(γ) for strings γ that can follow A
Calculating FIRST(γ)

- Sounds easy... If $\gamma = X Y Z$, then FIRST(γ) is FIRST(X), right?

 - But what if we have the rule $X ::= \epsilon$?
 - In that case, FIRST(γ) includes anything that can follow X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y can derive ϵ, FIRST(Z), and if Z can derive ϵ, ...
 - So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other symbols, as well as which ones can derive ϵ.
null (X) is true if X can derive the empty string

• Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin strings derived from γ
 — For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings γ

• FOLLOW(X) is the set of terminals that can immediately follow X in some derivation

• All three of these are computed together
Computing FIRST, FOLLOW, and nullable (1)

• Initialization
 set FIRST and FOLLOW to be empty sets
 set nullable to false for all non-terminals
 set FIRST[a] to a for all terminal symbols a

• Repeatedly apply four simple observations to update these sets
 – Stop when there are no further changes
 – Another fixed-point algorithm
Computing FIRST, FOLLOW, and nullable (2)

repeat
 for each production $X := Y_1 Y_2 ... Y_k$
 if $Y_1 ... Y_k$ are all nullable (or if $k = 0$)
 set nullable[X] = true
 for each i from 1 to k and each j from $i + 1$ to k
 if $Y_1 ... Y_{i-1}$ are all nullable (or if $i = 1$)
 add FIRST[Y_i] to FIRST[X]
 if $Y_{i+1} ... Y_k$ are all nullable (or if $i = k$)
 add FOLLOW[X] to FOLLOW[Y_i]
 if $Y_{i+1} ... Y_{j-1}$ are all nullable (or if $i+1=j$)
 add FIRST[Y_j] to FOLLOW[Y_i]
 Until FIRST, FOLLOW, and nullable do not change
Example

• Grammar

\[
\begin{align*}
Z & ::= d \\
Z & ::= X Y Z \\
Y & ::= \varepsilon \\
Y & ::= c \\
X & ::= Y \\
X & ::= a \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>
LR(0) Reduce Actions (review)

• In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol.

• Algorithm:
 Initialize R to empty
 for each state I in T
 for each item $[A ::= \alpha.]$ in I
 add $(I, A ::= \alpha)$ to R
SLR Construction

• This is identical to LR(0) – states, etc., except for the calculation of reduce actions

• Algorithm:
 - Initialize R to empty
 - for each state I in T
 - for each item $[A ::= \alpha.]$ in I
 - for each terminal a in FOLLOW(A)
 - add $(I, a, A ::= \alpha)$ to R
 - i.e., reduce α to A in state I only on lookahead a
SLR Parser for

0. \(S ::= E \) $
1. \(E ::= T + E \)
2. \(E ::= T \)
3. \(T ::= x \)
On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information
LR(1) Items

• An LR(1) item \([A ::= \alpha \cdot \beta, a]\) is
 – A grammar production \((A ::= \alpha\beta)\)
 – A right hand side position (the dot)
 – A lookahead symbol (a)
• Idea: This item indicates that \(\alpha\) is the top of the stack and the next input is derivable from \(\beta a\).
• Full construction: see the book
LR(1) Tradeoffs

• LR(1)
 – Pro: extremely precise; largest set of grammars
 – Con: potentially very large parse tables with many states
LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
 - Example: these two would be merged

 \[
 [A ::= x . , a] \\
 [A ::= x . , b]
 \]
LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
 - Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful
 - After the merge step, acts like SLR parser with “smarter” FOLLOW sets (may be specific to particular handles)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn’t happen often)
- Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)
Language Heirarchies

- LL(k)
- LR(k)
- LL(1)
- LR(1)
- LALR(1)
- SLR
- LL(0)
- LR(0)

unambiguous grammars

ambiguous grammars
Coming Attractions

Lecture
• LL(k) Parsing – Top-Down
• Recursive Descent Parsers
 – What you can do if you want a parser in a hurry

Sections
• AST construction – what do do while you parse!
• Visitor Pattern – how to traverse ASTs for further processing (type checking, code generation, ...)