CSE 401 – Compilers

Dataflow Analysis
Hal Perkins
Winter 2015
Agenda

• Dataflow analysis: a framework and algorithm for many common compiler analyses
• Initial example: dataflow analysis for common subexpression elimination
• Other analysis problems that work in the same framework
• Some of these are the same optimizations we’ve seen, but more formally and with details
Common Subexpression Elimination

- **Goal:** use dataflow analysis to find common subexpressions
- **Idea:** calculate *available expressions* at beginning of each basic block
- **Avoid re-evaluation of an available expression** – use a copy operation
 - Simple inside a single block; more complex dataflow analysis used across blocks
“Available” and Other Terms

• An expression e is **defined** at point p in the CFG if its value is computed at p
 – Sometimes called *definition site*

• An expression e is **killed** at point p if one of its operands is defined at p
 – Sometimes called *kill site*

• An expression e is **available** at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

• To compute available expressions, for each block b, define
 – AVAIL(b) – the set of expressions available on entry to b
 – NKILL(b) – the set of expressions not killed in b
 • i.e., all expressions in the program except for those killed in b
 – DEF(b) – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

• AVAIL(b) is the set
 \[AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x))) \]
 – preds(b) is the set of b’s predecessors in the CFG
 – The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
 – The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b

• This gives a system of simultaneous equations – a dataflow problem
Computing Available Expressions

• Big Picture
 – Build control-flow graph
 – Calculate initial local data – DEF(b) and NKILL(b)
 • This only needs to be done once for each block b and depends only on the statements in b
 – Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 • Another fixed-point algorithm
• For each block b with operations o_1, o_2, \ldots, o_k
 \[\text{KILLED} = \emptyset \quad \text{// killed variables, not expressions} \]
 \[\text{DEF}(b) = \emptyset \]
 for $i = k$ to 1 \quad \text{// note: working back to front}
 assume o_i is “$x = y + z$”
 if ($y \notin \text{KILLED}$ and $z \notin \text{KILLED}$)
 add “$y + z$” to $\text{DEF}(b)$
 add x to KILLED
 ...

Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block \(b \), compute set of all expressions in the program not killed in \(b \)

\[
\text{NKILL}(b) = \{ \text{all expressions} \}
\]

for each expression \(e \)

for each variable \(v \in e \)

if \(v \in \text{KILLED} \) then

\[
\text{NKILL}(b) = \text{NKILL}(b) - e
\]
Example: Compute DEF and NKILL

\[
\begin{align*}
 j &= 2 \times a \\
k &= 2 \times b
\end{align*}
\]

DEF = \{ 2a, 2b \}
NKILL = exprs w/o j or k

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
m &= 5 \times n
\end{align*}
\]

DEF = \{ 5n, c+d \}
NKILL = exprs w/o m, x, b

\[
\begin{align*}
h &= 2 \times a
\end{align*}
\]

DEF = \{ 2a \}
NKILL = exprs w/o h

\[
\begin{align*}
c &= 5 \times n
\end{align*}
\]

DEF = \{ 5n \}
NKILL = exprs w/o c
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

\[
\text{Worklist} = \{ \text{all blocks } b_i \}
\]

while (Worklist ≠ ∅)

remove a block \(b \) from Worklist

recompute \(\text{AVAIL}(b) \)

if \(\text{AVAIL}(b) \) changed

\[
\text{Worklist} = \text{Worklist} \cup \text{successors}(b)
\]
Example: Find Available Expressions

AVAIL(b) = \(\cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \)

DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

DEF = \{ 5*n \}
NKILL = exprs w/o c

DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

DEF = \{ 5*n \}
NKILL = exprs w/o c

DEF = \{ 2*a \}
NKILL = exprs w/o h
Example: Find Available Expressions

AVAIL(b) = \(\cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \)

\[
\begin{align*}
\text{j} &= 2 \times a \\
\text{k} &= 2 \times b \\
\text{x} &= a + b \\
\text{b} &= c + d \\
\text{m} &= 5 \times n \\
\text{c} &= 5 \times n \\
\text{h} &= 2 \times a
\end{align*}
\]

AVAIL = \{ \} \\
DEF = \{ 2*a, 2*b \} \\
NKILL = exprs w/o j or k

DEF = \{ 5*n \} \\
NKILL = exprs w/o c

DEF = \{ 2*a \} \\
NKILL = exprs w/o h

= in worklist \\
= processing

UW CSE 401 Winter 2015
R-13
Example: Find Available Expressions

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
\]

\[
\begin{align*}
&j = 2 \times a \\
&k = 2 \times b \\
&x = a + b \\
&b = c + d \\
&m = 5 \times n \\
&c = 5 \times n \\
&h = 2 \times a
\end{align*}
\]

AVAIL = \{ \} \\
DEF = \{ 2*a, 2*b \} \\
NKILL = exprs w/o j or k

DEF = \{ 5*n, c+d \} \\
NKILL = exprs w/o m, x, b

DEF = \{ 5*n \} \\
NKILL = exprs w/o c

AVAIL = \{ 5*n \} \\
DEF = \{ 2*a \} \\
NKILL = exprs w/o h

\text{in worklist} \\
\text{processing}
Example: Find Available Expressions

$\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))$

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b
\end{align*}
\]

\[
\begin{align*}
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n
\end{align*}
\]

\[
\begin{align*}
 h &= 2 \times a
\end{align*}
\]

\[
\begin{align*}
 \text{AVAIL} &= \{ \} \\
 \text{DEF} &= \{ 2a, 2b \} \\
 \text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
 \text{AVAIL} &= \{ 2a, 2b \} \\
 \text{DEF} &= \{ 5n, c+d \} \\
 \text{NKILL} &= \text{exprs w/o } m, x, b
\end{align*}
\]

\[
\begin{align*}
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 5n \} \\
 \text{NKILL} &= \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 2a \} \\
 \text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]

\[
\begin{align*}
 \text{AVAIL} &= \{ 2a, 2b \} \\
 \text{DEF} &= \{ 5n, c+d \} \\
 \text{NKILL} &= \text{exprs w/o } m, x, b
\end{align*}
\]

= in worklist

= processing
Example: Find Available Expressions

AVAIL(b) = \(\cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \)

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2a, 2b \} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2a, 2b \} \\
\text{DEF} &= \{ 5n, c+d \} \\
\text{NKILL} &= \text{exprs w/o } m, x, b
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2a, 2b \} \\
\text{DEF} &= \{ 5n \} \\
\text{NKILL} &= \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5n \} \\
\text{DEF} &= \{ 2a \} \\
\text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]
Example: Find Available Expressions

AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 h &= 2 \times a \\
 c &= 5 \times n
\end{align*}
\]

AVAIL = \{ \}
DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n \}
NKILL = exprs w/o c

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

AVAIL = \{ 5*n, 2*a \}
DEF = \{ 2*a \}
NKILL = exprs w/o h

= in worklist
= processing
Example: Find Available Expressions

AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (DEF(x) \cup (AVAIL(x) \cap NKILL(x)))

AVAIL = \{\}
DEF = \{2*a, 2*b\}
NKILL = exprs w/o j or k

AVAIL = \{2*a, 2*b\}
DEF = \{5*n, c+d\}
NKILL = exprs w/o m, x, b

x = a + b
b = c + d
m = 5 * n

AVAIL = \{\}
DEF = \{2*a, 2*b\}
NKILL = exprs w/o j or k

AVAIL = \{2*a, 2*b\}
DEF = \{5*n\}
NKILL = exprs w/o c

x = a + b
b = c + d
m = 5 * n

AVAIL = \{\}
DEF = \{2*a, 2*b\}
NKILL = exprs w/o j or k

AVAIL = \{2*a, 2*b\}
DEF = \{5*n\}
NKILL = exprs w/o c

h = 2 * a

AVAIL = \{\}
DEF = \{2*a, 2*b\}
NKILL = exprs w/o j or k

AVAIL = \{2*a, 2*b\}
DEF = \{5*n\}
NKILL = exprs w/o c

And the common subexpression is???
Example: Find Available Expressions

$$AVAIL(b) = \cap_{x \in preds(b)} (DEF(x) \cup (AVAIL(x) \cap NKILL(x)))$$

- $$AVAIL = \{\}$$
- $$DEF = \{2*a, 2*b\}$$
- $$NKILL = \text{exprs w/o j or k}$$

- $$AVAIL = \{2*a, 2*b\}$$
- $$DEF = \{5*n, c+d\}$$
- $$NKILL = \text{exprs w/o m, x, b}$$

- $$AVAIL = \{2*a, 2*b\}$$
- $$DEF = \{5*n\}$$
- $$NKILL = \text{exprs w/o c}$$

- $$AVAIL = \{5*n, 2*a\}$$
- $$DEF = \{2*a\}$$
- $$NKILL = \text{exprs w/o h}$$

Legend:
- Green = in worklist
- Yellow = processing
Dataflow analysis

• Available expressions are an example of a *dataflow analysis* problem
• Many similar problems can be expressed in a similar framework
• Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block b
 - $\text{IN}(b)$ – facts true on entry to b
 - $\text{OUT}(b)$ – facts true on exit from b
 - $\text{GEN}(b)$ – facts created and not killed in b
 - $\text{KILL}(b)$ – facts killed in b

• These are related by the equation
 $$\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))$$
 – Solve this iteratively for all blocks
 – Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

• A variable v is *live* at point p iff there is *any* path from p to a use of v along which v is not redefined.

• Some uses:
 – Register allocation – only live variables need a register.
 – Eliminating useless stores – if variable not live at store, then stored variable will never be used.
 – Detecting uses of uninitialized variables – if live at declaration (before initialization) then it might be used uninitialized.
 – Improve SSA construction – only need \(\Phi \)-function for variables that are live in a block (later).
Liveness Analysis Sets

• For each block b, define
 – use[b] = variable used in b before any def
 – def[b] = variable defined in b & not killed
 – in[b] = variables live on entry to b
 – out[b] = variables live on exit from b
Equations for Live Variables

- Given the preceding definitions, we have
 \[
 \text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
 \]
 \[
 \text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
 \]

- Algorithm
 - Set \(\text{in}[b] = \text{out}[b] = \emptyset\)
 - Update in, out until no change
Example (1 stmt per block)

• Code

 a := 0
 L: b := a+1
 c := c+b
 a := b*2
 if a < N goto L
 return c

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]
\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

Table

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>--</td>
<td>--</td>
<td>c</td>
<td>--</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>--</td>
<td>c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>a</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code

1: \(a:= 0 \)

2: \(b:=a+1 \)

3: \(c:=c+b \)

4: \(a:=b+2 \)

5: \(a < N \)

6: return \(c \)

\[
\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]

\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Equations for Live Variables v2

• Many problems have more than one formulation. For example, Live Variables...

• Sets
 – USED(b) – variables used in b before being defined in b
 – NOTDEF(b) – variables not defined in b
 – LIVE(b) – variables live on exit from b

• Equation
 \[\text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s)) \]
Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 – Forward problems – reverse postorder
 – Backward problems – postorder
Example: Reaching Definitions

• A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

• Uses
 – Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

• Sets
 - DEFOUT(b) – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 - SURVIVED(b) – set of all definitions not obscured by a definition in b
 - REACHES(b) – set of definitions that reach b

• Equation

\[
\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))
\]
Example: Very Busy Expressions

• An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

• Uses
 – Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

- **Sets**
 - USED(b) – expressions used in b before they are killed
 - KILLED(b) – expressions redefined in b before they are used
 - VERYBUSY(b) – expressions very busy on exit from b

- **Equation**
 \[
 \text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) \setminus \text{KILLED}(s))
 \]
Using Dataflow Information

• A few examples of possible transformations...
Classic Common-Subexpression Elimination (CSE)

• In a statement s: t := x op y, if x op y is available at s then it need not be recomputed
• Analysis: compute reaching expressions i.e.,
 statements n: v := x op y such that the path from n to s does not compute x op y or define x or y
Classic CSE Transformation

• If \(x \text{ op } y \) is defined at \(n \) and reaches \(s \)
 – Create new temporary \(w \)
 – Rewrite \(n: v := x \text{ op } y \) as
 \[
 n: w := x \text{ op } y \\
 n': v := w
 \]
 – Modify statement \(s \) to be
 \(s: t := w \)
 – (Rely on copy propagation to remove extra assignments if not really needed)
Revisiting Example (w/slight addition)

\[j = 2 \times a \]
\[k = 2 \times b \]

\[AVAIL = \{ \} \]

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

\[AVAIL = \{ 2a, 2b \} \]

\[c = 5 \times n \]

\[AVAIL = \{ 2a, 2b \} \]

\[h = 2 \times a \]
\[i = 5 \times n \]

\[AVAIL = \{ 5n, 2a \} \]
Revisiting Example (w/slight addition)

\[t_1 = 2 \times a \]
\[j = t_1 \]
\[k = 2 \times b \]

\[x = a + b \]
\[b = c + d \]
\[t_2 = 5 \times n \]
\[m = t_2 \]

\[h = t_1 \]
\[i = t_2 \]

\[t_2 = 5 \times n \]
\[c = t_2 \]

\[\text{AVAIL} = \{ 2a, 2b \} \]
\[\text{AVAIL} = \{ 5n, 2a \} \]
Then Apply Very Busy...

```
AVAIL = { 2*a, 2*b }

x = a + b
b = c + d
t2 = 5 * n
m = t2

h = t1
i = t2

t1 = 2 * a
j = t1
k = 2 * b
t2 = 5 * n

AVAIL = { 5*n, 2*a }
AVAIL = { 2*a, 2*b }
AVAIL = { 5*n, 2*a }
AVAIL = { 2*a, 2*b }

```

AVAIL = { }
Constant Propagation

• Suppose we have
 – Statement d: t := c, where c is constant
 – Statement n that uses t

• If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

• Similar to constant propagation

• Setup:
 – Statement d: t := z
 – Statement n uses t

• If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 – Recall that this can help remove dead assignments
Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic

• But it can expose other optimizations, e.g.,
 \[a := y + z \]
 \[u := y \]
 \[c := u + z \] // copy propagation makes this \(y + z \)
 – After copy propagation we can recognize the common subexpression
Dead Code Elimination

• If we have an instruction

 \[s: \text{a} := \text{b op c} \]

 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated

 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)

• If \(b \) or \(c \) are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise
Dataflow...

- General framework for discovering facts about programs
 - Although not the only possible story
- And then: facts open opportunities for code improvement
- Next time: SSA (static single assignment) form – transform program to a new form where each variable has only one single definition
 - Can make many optimizations/analysis more efficient