CSE 401 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Winter 2015
Agenda

- Top-Down Parsing
- Predictive Parsers
- $\text{LL}(k)$ Grammars
- Recursive Descent
- Grammar Hacking
 - Left recursion removal
 - Factoring

UW CSE 401 Winter 2015
Basic Parsing Strategies (1)

• Bottom-up
 – Build up tree from leaves
 • Shift next input or reduce a handle
 • Accept when all input read and reduced to start symbol of the grammar
 – LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
Basic Parsing Strategies (2)

• Top-Down
 – Begin at root with start symbol of grammar
 – Repeatedly pick a non-terminal and expand
 – Success when expanded tree matches input
 – LL(k)
Top-Down Parsing

- Situation: have completed part of a left-most derivation
 \[S \Rightarrow^* wA\alpha \Rightarrow^* wxy \]

- Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 \ldots \beta_n \]
 that will properly expand \(A \)
to match the input
 - Want this to be deterministic
Predictive Parsing

- If we are located at some non-terminal A, and there are two or more possible productions

 $A ::= \alpha$

 $A ::= \beta$

 we want to make the correct choice by looking at just the next input symbol

- If we can do this, we can build a predictive parser that can perform a top-down parse without backtracking
Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

 \[
 stmt ::= id = exp ; | \text{return } exp ; \\
 \quad | \text{if } (\text{exp}) \text{stmt} | \text{while } (\text{exp}) \text{stmt}
 \]

If the next part of the input begins with the tokens

\[
\text{IF LPAREN } \text{ID(x)} \ldots
\]

we should expand \textit{stmt} to an if-statement
LL(1) Property

• A grammar has the LL(1) property if, for all non-terminals A, if productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, then it is true that
 \[
 \text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset
 \]

• If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead
LL(k) Parsers

• An LL(k) parser
 – Scans the input Left to right
 – Constructs a Leftmost derivation
 – Looking ahead at most k symbols

• 1-symbol lookahead is enough for many practical programming language grammars
 – LL(k) for k>1 is rare in practice
Table-Driven LL(k) Parsers

• As with LR(k), a table-driven parser can be constructed from the grammar

• Example
 1. $S ::= (S) S$
 2. $S ::= [S] S$
 3. $S ::= \epsilon$

• Table

<table>
<thead>
<tr>
<th></th>
<th>()</th>
<th>[]</th>
<th>$ $</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

UW CSE 401 Winter 2015
LL vs LR (1)

• Table-driven parsers for both LL and LR can be automatically generated by tools
• LL(1) has to make a decision based on a single non-terminal and the next input symbol
• LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol
LL vs LR (2)

∴ LR(1) is more powerful than LL(1)
 – Includes a larger set of languages
∴ (editorial opinion) If you’re going to use a tool-generated parser, might as well use LR
 – But there are some very good LL parser tools out there (ANTLR, JavaCC, …) that might win for other reasons
Recursive-Descent Parsers

• A main advantage of top-down parsing is that it is easy to implement by hand
 – And even if you use automatic tools, the code may be easier to follow and debug

• Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar
 – Each of these functions is responsible for matching its non-terminal with the next part of the input
Example: Statements

Grammar

\[stmt ::= id = exp ; \]
\[\quad | \text{return } exp ; \]
\[\quad | \text{if (} exp \text{) } stmt \]
\[\quad | \text{while (} exp \text{) } stmt \]

Method for this grammar rule

// parse stmt ::= id=exp; | ...
void stmt() {
 switch(nextToken) {
 \quad RETURN: returnStmt(); break;
 \quad IF: ifStmt(); break;
 \quad WHILE: whileStmt(); break;
 \quad ID: assignStmt(); break;
 }
}
Example (more statements)

```c
// parse while (exp) stmt
void whileStmt() {
    // skip "while" "(
    getNextToken();
    getNextToken();

    // parse condition
    exp();

    // skip ")
    getNextToken();

    // parse stmt
    stmt();
}

// parse return exp ;
void returnStmt() {
    // skip "return"
    getNextToken();

    // parse expression
    exp();

    // skip ";"
    getNextToken();
}
```
Invariant for Parser Functions

- The parser functions need to agree on where they are in the input
- Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed
 - Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal
Possible Problems

• Two common problems for recursive-descent (and LL(1)) parsers
 – Left recursion (e.g., $E ::= E + T \mid \ldots$)
 – Common prefixes on the right side of productions
Left Recursion Problem

Grammar rule

\[expr ::= expr + term \]
\[\quad | \quad term \]

And the bug is????

Code

```
// parse expr ::= ...
void expr() {
    expr();
    if (current token is PLUS) {
        getNextToken();
        term();
    }
}
```
Left Recursion Problem

• If we code up a left-recursive rule as-is, we get an infinite recursion
• Non-solution: replace with a right-recursive rule

 \[expr ::= term + expr \mid term \]

 – Why isn’t this the right thing to do?
One Left Recursion Solution

- Rewrite using right recursion and a new non-terminal
- Original: $expr ::= expr + term \mid term$
- New
 $$expr ::= term exprtail$$
 $$exprtail ::= + term exprtail \mid \varepsilon$$
- Properties
 - No infinite recursion if coded up directly
 - Maintains required left associatively (if you interpret the parse tree the right way in the semantic actions)
Another Way to Look at This

• Observe that

\[expr ::= expr + term \mid term \]

generates the sequence

\[(((term + term) + term) + ...) + term \]

• We can sugar the original rule to reflect this

\[expr ::= term \{ + term \}* \]

• This leads directly to parser code

 – Just be sure to do the correct thing to handle associativity as the terms are parsed
Code for Expressions (1)

```
// parse
// expr ::= term { + term }*
void expr() {
    term();
    while (next symbol is PLUS) {
        getNextToken();
        term()
    }
}

// parse
// term ::= factor { * factor }*
void term() {
    factor();
    while (next symbol is TIMES) {
        getNextToken();
        factor()
    }
}
```
Code for Expressions (2)

```c
// parse
// factor ::= int | id | ( expr )
void factor() {

    switch(nextToken) {
        case INT:
            process int constant;
            getNextToken();
            break;
        case ID:
            process identifier;
            getNextToken();
            break;
        case LPAREN:
            getNextToken();
            expr();
            getNextToken();
            break;
    }
}
```
What About Indirect Left Recursion?

• A grammar might have a derivation that leads to a left recursion
 \[A \Rightarrow \beta_1 \Rightarrow^* \beta_n \Rightarrow A \gamma \]

• There are systematic ways to factor such grammars
 – See any compiler or formal language book
Left Factoring

• If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use

• Solution: Factor the common prefix into a separate production
Left Factoring Example

• Original grammar

\[
\text{ifStmt} ::= \text{if} (\text{expr}) \text{stmt} \\
| \text{if} (\text{expr}) \text{stmt} \text{ else stmt}
\]

• Factored grammar

\[
\text{ifStmt} ::= \text{if} (\text{expr}) \text{stmt} \text{ ifTail} \\
\text{ifTail} ::= \text{else stmt} | \varepsilon
\]
Parsing if Statements

- But it’s easiest to just code up the “else matches closest if” rule directly

- (If you squint properly this is really just left factoring with the two productions combined in a single routine)

```c
// parse
// if (expr) stmt [ else stmt ]
void ifStmt()
{
    getNextToken();
    getNextToken();
    expr();
    getNextToken();
    stmt();
    if (next symbol is ELSE) {
        getNextToken();
        stmt();
    }
}
```
Another Lookahead Problem

• In languages like FORTRAN, parentheses are used for array subscripts.

• A FORTRAN grammar includes something like

 \[
 \text{factor} ::= \text{id (subscripts }) | \text{id (arguments }) | \ldots
 \]

• When the parser sees “\text{id (””, how can it decide whether this begins an array element reference or a function call?
Two Ways to Handle $id(?)$

- Use the type of id to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass
- Use a covering grammar
 \[
 \text{factor ::= id (commaSeparatedList) | ...}
 \]
 and fix/check later when more information is available (e.g., types)
Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
 - With some possible grammar refactoring
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice
 - And some sophisticated hand-written parsers for real languages (e.g., C++) are “based on” LL parsing, but with lots of customizations
Parsing Concluded

• That’s it!
• On to the rest of the compiler
• Coming attractions
 – Intermediate representations (ASTs etc.)
 – Semantic analysis (including type checking)
 – Symbol tables
 – & more...