CSE 401 – Compilers

LR Parser Construction
Hal Perkins
Winter 2015
Administrivia

• Scanners due tomorrow, 11 pm – how’s it look?

• Next HW on CFGs and LR parsing, and next part of the project, parser+ast, out later today
 – HW2 (grammars, LR) due a week from tomorrow
 – Parser+ast project due a week after that
 – Calendar updated to provide a bit more time for these

• Sections tomorrow: Parser specifications and tools, semantic actions, ASTs, etc. – next part of the project
Agenda

• LR(0) state construction
• FIRST, FOLLOW, and nullable
• Variations: SLR, LR(1), LALR
LR State Machine

• Idea: Build a DFA that recognizes handles
 – Language generated by a CFG is generally not regular, but
 – Language of handles for a CFG is regular
 • So a DFA can be used to recognize handles
 – LR Parser reduces when DFA accepts a handle
Prefixes, Handles, &c (review)

• If S is the start symbol of a grammar G,
 – If $S \Rightarrow^* \alpha$ then α is a *sentential form* of G
 – γ is a *viable prefix* of G if there is some derivation
 $S \Rightarrow^*_r \alpha Aw \Rightarrow^*_r \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 – The occurrence of β in $\alpha \beta w$ is a *handle* of $\alpha \beta w$

• An *item* is a marked production (a . at some position in the right hand side)
 – $[A ::= . X Y] \ [A ::= X . Y] \ [A ::= X Y .] $
Building the LR(0) States

• Example grammar

 \[
 S' ::= S \$
 \]

 \[
 S ::= (L)
 \]

 \[
 S ::= x
 \]

 \[
 L ::= S
 \]

 \[
 L ::= L , S
 \]

 – We add a production S' with the original start symbol followed by end of file ($$)
 • We accept if we reach the end of this production

 – Question: What language does this grammar generate?
Start of LR Parse

• Initially
 – Stack is empty
 – Input is the right hand side of S', i.e., S
 – Initial configuration is $[S' ::= . S]$
 – But, since position is just before S, we are also just before anything that can be derived from S

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L , S$
Initial state

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

\[
S' ::= . S$
\]
\[
S ::= . (L)
\]
\[
S ::= . x
\]

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$

UW CSE 401 Winter 2015
Shift Actions (1)

- To shift past the x, add a new state with appropriate item(s), including their closure
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

```
S' ::= . S$
S ::= . ( L )
S ::= . x
```

```
0. S' ::= S$
1. S ::= ( L )
2. S ::= x
3. L ::= S
4. L ::= L, S
```
Shift Actions (2)

- If we shift past the (, we are at the beginning of L.
- The closure adds all productions that start with L, which also requires adding all productions starting with S.

0. $S' ::= S$
1. $S ::= (\ L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$
Goto Actions

- Once we reduce S, we’ll pop the rhs from the stack exposing the first state. Add a *goto* transition on S for this.
Basic Operations

• **Closure (S)**
 – Adds all items implied by items already in S

• **Goto (I, X)**
 – I is a set of items
 – X is a grammar symbol (terminal or non-terminal)
 – *Goto* moves the dot past the symbol X in all appropriate items in set I
Closure Algorithm

- \textit{Closure} \((S) = \)

 repeat

 for any item \([A ::= \alpha . B \beta] \) in \(S\)

 for all productions \(B ::= \gamma\)

 add \([B ::= . \gamma]\) to \(S\)

 until \(S\) does not change

 return \(S\)

- Classic example of a fixed-point algorithm
Goto Algorithm

• \(Goto (I, X) = \)

 set \(new \) to the empty set

 for each item \([A ::= \alpha . X . \beta]\) in \(I\)

 add \([A ::= \alpha X . \beta]\) to \(new\)

 return \(Closure (new)\)

• This may create a new state, or may return an existing one
LR(0) Construction

• First, augment the grammar with an extra start production \(S' ::= S \) $

• Let \(T \) be the set of states

• Let \(E \) be the set of edges

• Initialize \(T \) to \(\text{Closure} \left([S' ::= . S \] \right) \)

• Initialize \(E \) to empty
LR(0) Construction Algorithm

repeat
 for each state l in T
 for each item [$A ::= \alpha . X \ \beta$] in l
 Let new be $\text{Goto}(l, X)$
 Add new to T if not present
 Add $l \xrightarrow{X} new$ to E if not present
 until E and T do not change in this iteration

• Footnote: For symbol $\$, we don’t compute $\text{goto}(l, \)$; instead, we make this an accept action.
Example: States for

0. \(S' ::= S \$
1. \(S ::= (L) \)
2. \(S ::= x \)
3. \(L ::= S \)
4. \(L ::= L , S \)
Building the Parse Tables (1)

• For each edge $I \xrightarrow{X} J$
 – if X is a terminal, put s_j in column X, row I of the action table (shift to state j)
 – If X is a non-terminal, put g_{ij} in column X, row I of the goto table
Building the Parse Tables (2)

• For each state I containing an item $[S' ::= S . \$.], put *accept* in column $\$ of row I

• Finally, for any state containing $[A ::= \gamma .]$, put action *rn* (reduce) in every column of row I in the table, where n is the *production* number
Example: Tables for

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$
Where Do We Stand?

• We have built the LR(0) state machine and parser tables
 – No lookahead yet
 – Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same
A Grammar that is not LR(0)

• Build the state machine and parse tables for a simple expression grammar

\[
\begin{align*}
S & ::= E \, $ \\
E & ::= T + E \\
E & ::= T \\
T & ::= x
\end{align*}
\]
LR(0) Parser for

0. $S ::= E \$ $
1. $E ::= T + E$
2. $E ::= T$
3. $T ::= x$

- State 3 is has two possible actions on $+$
 - shift 4, or reduce 2
- \therefore Grammar is not LR(0)
How can we solve conflicts like this?

• Idea: look at the next symbol after the handle before deciding whether to reduce

• Easiest: SLR – Simple LR. Reduce only if next input terminal symbol could follow resulting nonterminal

• More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a particular instance of a reduction
 — LALR used by YACC/Bison/CUP; we won’t examine in detail
SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction; don’t reduce if the next input symbol can’t follow the resulting non-terminal.

- We need to be able to compute FOLLOW(A) – the set of symbols that can follow A in any possible derivation.
 - i.e., t is in FOLLOW(A) if any derivation contains At.
 - To compute this, we need to compute FIRST(γ) for strings γ that can follow A.
Calculating FIRST(\(\gamma\))

• Sounds easy... If \(\gamma = X \ Y \ Z\), then FIRST(\(\gamma\)) is FIRST (\(X\)), right?

 – But what if we have the rule \(X ::= \epsilon\)?
 – In that case, FIRST(\(\gamma\)) includes anything that can follow \(X\), i.e. FOLLOW(\(X\)), which includes FIRST(\(Y\)) and, if \(Y\) can derive \(\epsilon\), FIRST(\(Z\)), and if \(Z\) can derive \(\epsilon\), ...
 – So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other symbols, as well as which ones can derive \(\epsilon\).
FIRST, FOLLOW, and nullable

• nullable(X) is true if X can derive the empty string

• Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin strings derived from γ

 — For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings γ

• FOLLOW(X) is the set of terminals that can immediately follow X in some derivation

• All three of these are computed together
Computing FIRST, FOLLOW, and nullable (1)

- Initialization
 - set FIRST and FOLLOW to be empty sets
 - set nullable to false for all non-terminals
 - set FIRST[a] to a for all terminal symbols a

- Repeatedly apply four simple observations to update these sets
 - Stop when there are no further changes
 - Another fixed-point algorithm
Computing FIRST, FOLLOW, and nullable (2)

repeat
 for each production $X := Y_1 Y_2 \ldots Y_k$
 if $Y_1 \ldots Y_k$ are all nullable (or if $k = 0$)
 set nullable[X] = true
 for each i from 1 to k and each j from $i + 1$ to k
 if $Y_1 \ldots Y_{i-1}$ are all nullable (or if $i = 1$)
 add FIRST[Y_i] to FIRST[X]
 if $Y_{i+1} \ldots Y_k$ are all nullable (or if $i = k$)
 add FOLLOW[X] to FOLLOW[Y_i]
 if $Y_{i+1} \ldots Y_{j-1}$ are all nullable (or if $i+1=j$)
 add FIRST[Y_j] to FOLLOW[Y_i]
 Until FIRST, FOLLOW, and nullable do not change
Example

• Grammar

Z ::= d
Z ::= X Y Z
Y ::= ε
Y ::= c
X ::= Y
X ::= a

nullable FIRST FOLLOW

X
Y
Z
LR(0) Reduce Actions (review)

• In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol

• Algorithm:
 Initialize R to empty
 for each state I in T
 for each item $[A ::= \alpha .]$ in I
 add $(I, A ::= \alpha)$ to R
SLR Construction

- This is identical to LR(0) – states, etc., except for the calculation of reduce actions
- Algorithm:
 Initialize R to empty
 for each state I in T
 for each item $[A ::= \alpha .]$ in I
 for each terminal a in FOLLOW(A)
 add $(I, a, A ::= \alpha)$ to R
 -- i.e., reduce α to A in state I only on lookahead a
SLR Parser for

0. $S ::= E \cdot$
1. $E ::= T + E$
2. $E ::= T$
3. $T ::= x$

\[
\begin{array}{c|c|c}
\text{E} & \text{T} \\
\hline
s5 & g2 & g3 \\
\hline
r2 & acc \\
\hline
s4, r2 & r2 \\
\hline
s5 & g6 & g3 \\
\hline
r3 & r3 & r3 \\
\hline
r1 & r1 & r1 \\
\end{array}
\]
On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information
LR(1) Items

- An LR(1) item $[A ::= \alpha . \beta, a]$ is
 - A grammar production ($A ::= \alpha\beta$)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from βa.
- Full construction: see the book
LR(1) Tradeoffs

• LR(1)
 – Pro: extremely precise; largest set of grammars
 – Con: potentially very large parse tables with many states
LALR(1)

• Variation of LR(1), but merge any two states that differ only in lookahead

 – Example: these two would be merged

 \[A ::= x . , a \]

 \[A ::= x . , b \]
LALR(1) vs LR(1)

• LALR(1) tables can have many fewer states than LR(1)
 – Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful
 – After the merge step, acts like SLR parser with “smarter” FOLLOW sets (may be specific to particular handles)
• LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn’t happen often)
• Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)

UW CSE 401 Winter 2015
Language Heirarchies

unambiguous grammars

LL(k) LR(k)
LL(1) LR(1)
LALR(1)
SLR
LL(0)
LR(0)

ambiguous grammars
Coming Attractions

Lecture

• LL(k) Parsing – Top-Down
• Recursive Descent Parsers
 – What you can do if you want a parser in a hurry

Sections

• AST construction – what do do while you parse!
• Visitor Pattern – how to traverse ASTs for further processing (type checking, code generation, ...)