
 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 1 of 8

Question 1. (12 points, 2 each) The front end of a compiler consists of three parts:

scanner, parser, and (static) semantics. Collectively these need to analyze the input

program and decide if it is correctly formed. For each of the following properties or

errors, indicate which stage of the front-end of the compiler would normally handle it. If

it helps to explain your answer you can give a brief reason why, but that is not required.

 (a) In a variable declaration, the variable has not previously been declared in the same

scope.

 semantics

 (b) += is not a legal assignment operator in MiniJava.

 parser (+ and = are both legal tokens, so the scanner won’t detect the error)

(c) A comment beginning with /* is not terminated before reaching the end of the input

file (i.e., no matching */ found).

 scanner

(e) In the method call x.m(e1,e2,…,en), the type of x includes a suitable method m.

 semantics

 (e) Class declarations cannot be nested in MiniJava.

 parser (the grammar does not include nested class declarations)

(f) The € character cannot be used in an identifier in MiniJava.

 scanner

 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 2 of 8

Question 2. Regular expressions (12 points, 6 each) Give regular expressions for the

following sets of strings. You may only use the basic operations of concatenation, choice

(|), and repetition (*), plus the simple extensions ? and +, and character sets like [a-z] and

[^a-z]. You may also give names to subexpressions like vowels = [aeiou].

(a) All strings of 0’s and 1’s that have at least one character and start and end with the

same character. (Note that the strings 0 and 1 by themselves are in this set, as well as

longer strings of 0’s and 1’s that have the same character at the beginning and end.)

Here are two possibilities; there are many others:

 0 | 1 | 0(0|1)*0 | 1(0|1)*1 0((0|1)*0)? | 1((0|1)*1)?

(b) All strings of a’s, b’s and c’s that (i) have at least one c, and (ii) all of the a’s (if any)

are to the left of all of the b’s (if any).

Two example solutions. For both, let acs = (a|c)* and bcs = (b|c)*.

Solution 1: acs bcs c | acs c bcs | c acs bcs

Solution 2: acs c acs bcs | acs bcs c bcs

 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 3 of 8

Question 3. DFAs. (8 points) Draw a DFA that accepts strings generated by the regular

expression (a | (bc)* d)+

Note that (bc)* means empty or bc or bcbc or bcbcbc…, but not an arbitrary

sequence of b’s and c’s. That would be (b|c)*.

a, d

b

b

b

a, d

c

d

 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 4 of 8

Question 4. Context-free grammars (14 points) Consider the following syntax for

expressions involving addition and field selection:

 expr ::= expr + field

 expr ::= field

 field ::= expr . id

 field ::= id

(a) (8 points) Show that this grammar is ambiguous.

Here are two derivations of id+id.id:

(b) (6 points) Give an unambiguous context-free grammar that fixes the problem(s) with

the grammar in part (a) and generates expressions with id, field selection and addition.

As in Java, field selection should have higher precedence than addition and both field

selection and addition should be left-associative (i.e., a+b+c means (a+b)+c).

The problem is in the first rule for field, which creates an ambiguous precedence.

Here is a reasonably simple fix.

 expr ::= expr + field

 expr ::= field

 field ::= field . id

 field ::= id

expr

expr

field

id + id . id

field

expr

field

expr

id + id . id

field

expr

field
expr

field

 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 5 of 8

Question 5. (26 points) The oh-no-not-again LR-parsing question. Here is a tiny

grammar.

 0. exp′ ::= exp $

 1. exp ::= id [exp]

 2. exp ::= id

(a) (11 points) Draw the LR(0) state machine for this grammar.

(continued on next page)

exp' ::= . exp $

exp ::= . id [exp]

exp ::= . id

exp' ::= exp . $

exp ::= id . [exp]

exp ::= id .

exp ::= id [. exp]

exp ::= . id [exp]

exp ::= . id

exp ::= id [exp .]

exp ::= id [exp] .

exp

id

[id

exp

]

1 2

3

4

5

6

 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 6 of 8

Question 5. (cont.) Grammar repeated from previous page for reference.

 0. exp′ ::= exp $

 1. exp ::= id [exp]

 2. exp ::= id

(b) (9 points) Construct the LR(0) parse table for this grammar based on the state

machine in your answer to part (a).

State id [] $ exp

1 s3 g2

2 acc

3 r2 r2, s4 r2 r2

4 s3 g5

5 s6

6 r1 r1 r1 r1

(b) (3 points) Is this grammar LR(0)? Why or why not?

No. There is a shift/reduce conflict in state 3 on input [.

(c) (3 points) Is this grammar SLR? Why or why not?

Yes. [is not in FOLLOW(exp) so we can eliminate the conflict in state 3.

 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 7 of 8

Question 6. Project (14 points) Suppose we want to add a do-while loop to MiniJava

like the one found in Java, C, C++, and other languages. The syntax of do-while is

 do Statement while (Expression)

The semantics of do-while is that the Statement is executed, then the Expression is

evaluated, then, if the Expression is true, the process repeats again until the Expression

eventually evaluates to false.

(a) (3 points) What changes need to be made to the MiniJava scanner if this statement is

added? You do not need to give specific JFlex or CUP code, just describe the needed

changes, if any.

 Add DO as a new token

 Add a rule to JFlex to recognize “do” as a new keyword and return this new

token.

(b) (3 points) What changes or additions (if any) need to be made to the MiniJava AST

classes to add the do-while statement? Again, you don’t need to give specific code, but

describe your changes specifically enough that anyone familiar with the project could

make the changes mechanically.

 Add a new DoStatement AST node class extending Statement with instance

variables for the expression and statement that make up the loop.

(c) (8 points) Give the code that needs to be added to the grammar part of the CUP

specification for Statement to successfully parse the new do-while statement, including

appropriate semantic action code to create appropriate part(s) of the AST.

Statement ::= DO Statement:s WHILE LPAREN Expression:e RPAREN

 {: RESULT = new DoStatement(s,e,sleft); :}

No points were deducted if you did not include the line number.

 CSE 401 Midterm Exam Sample Solution 11/4/11

 Page 8 of 8

Question 7. (14 points, 7 each) Suppose we encounter the following statement in a

MiniJava program:

 foo = x.m(a[i]);

(a) Draw a tree below showing the abstract syntax for this statement. Don’t worry about

whether you match the AST classes in the MiniJava project exactly (you’re not expected

to memorize that sort of thing), but be sure that you have the appropriate nodes and edges

to include the information that belongs in the abstract syntax.

(b) After you’ve drawn the AST for this statement, annotate it by writing next to the

appropriate nodes the checks or tests that need to be done in the static semantics/type-

checking phase of the compiler to ensure that this statement does not contain any errors.

= (assign)

id: foo method call

id: x id: m [] (array element)

id: a id: i

- left operand is assignable (lvalue)

- type of expression is assignment

compatible with type of left operand

- type of left expression has

method m with one parameter

-argument type is assignment

compatible with parameter type

- type of left expresson

 is int[]

- type of subscript is int - identifiers are declared and

 are visible in current scope

