UW Computer Science and Engineering
CSEA401: Introduction to Compilers
Robert R. Henry
Dynamic Programming with Tree Pattern Matching Code Generators
Bottom Up Rewrite Systems (BURS)

05Mar2014
The C source code:
int A[...]; // A presumed to start 84 bytes from %rbp
inti=..; //ipresumed to start 24 bytes from the %rbp
Ali] = 0;

The subject computation tree we want to generate code for:

Store 0
\
|
+/*

24 %rbp

We assume that constants always appear on the left hand side of the operator.

Here, we simply count instructions as our metric, and minimize the number of instructions generated.

We could also use other plausible metrics, such as istream encoding bytes, machine cycles, and power. However, counting
cycles and power is likely to be difficult to do, since they vary depending on the context of the instruction, such as the
instruction’s location in the cache, or super-secret undocumented manufacture private information. Even counting the
encoding bytes is difficult, since on x86_64 using some registers costs more to encode than using other registers, and we like
to defer register allocation until a follow on pass of the compiler.

The instruction tree patterns (the distinguished symbol is Root):

Number Replacement Pattern Cost Assembly
1 Root = 1 movq $Constant, addr
Store Constant
aJdr
2 Root = 1 movq reg,, addr
Store reg,
ad‘dr
3 reg, regy 1 movq regy,reg,
4 reg, Constant 1 movq $Constant, reg,
5 reg, Fetch 1 movq addr,reg,
aédr
6 reg, addr 1 leaq addr,reg,
7 reg, + 1 addq regy,,reg,
N
reg, Teg,
8 reg, + 1 addq addr,reg,
N
Fetch reg,
aédr
9 reg, + 1 addq addr,reg,
S
reg, Fetch
aédr
10 reg, + 1 addq $Constant,reg,
Constant reg,
11 reg, + 1 incq reg,
Constant/1 reg,
12 reg, Constant/0 1 Xorq reg,, reg,
13 reg, * 1 mulq reg,,reg,
N
reg, Teg,
14 reg, * 1 aslq $3,reg,
Constant/8 reg,
15 reg, * 1 mulq $Constant,reg,,

Constant reg,

Number Replacement Pattern Cost Assembly

16 addr reg, 0 (regy)

17 addr 0 Constant(reg,)

>+

Constant reg,

18 addr 0 Constant(reg,,reg;,1)

>+

Constant

)+

reg; reg,

19 addr 0 Constant(reg,,reg;,4)

>+

Constant

>+

reg,

>*

Constant/4 reg;

20 addr 0 Constant(reg,,reg,,8)

>+

Constant

>+

TEgy

>*

Constant/8 reg;

21 addr 0 Constant(reg,,reg;,1)

>+

Teg;

>+

Constant reg,

22 addr 0 Constant(reg,,reg;,4)

+
—’/*

Constant reg, Constant/4 reg;

)
)

23 addr 0 Constant(reg,,reg;,8)

+
—/\k

Constant reg, Constant/8 reg,

)
)

