
CSE 401 - Compilers
Section 6

2/21/2013
12:30 - MEB 238

1:30 - EE 037



Midterms

Grades posted
Tests will be returned tomorrow in class

Mean: 90.2
Median: 94.5
Std Dev: 11.75

Bring questions to my office hours after class 
tomorrow in CSE 218



Project Part III Overview

Due: Friday, March 1
● Build symbol tables
● Calculate type information
● Perform error checking
● Print symbol tables

Lots of hints in the writeup:
● Use (many) visitors
● Use helper methods
● ...



Tests

Some generally good advice:
● Write your tests first
● Keep unit tests small
● Only test one thing per test

Some options for running tests:
● Write JUnit tests
● Write a script to run your tests (possibly via 

ant) and check exit codes



Test Driven Development

For each semantic error you need to catch:
● Write a minijava program containing that error
● Check that your compiler fails to catch the error
● Update the compiler to detect the error
● Check that your compiler catches the error

Advantages:
● Tests are written first
● Tests are small
● Test coverage is good (regression testing)



MiniJava Symbol Tables

Global Table: Map class names to class tables

Class Tables: Map methods and fields to type 
information, storage locations, etc.

Method Tables: Map variables and parameters to 
type information, storage locations, etc.

You will probably want to persist tables over 
multiple compiler passes



Types in Minijava

Types are not AST nodes!
● Create your own "type" class hierarchy
● Use singletons for base types (int, ...)

Use helpers: assignmentCompatible(Type, Type)

See lecture slides for more hints

Real Java has coercions, casting, ...



x86 Highlights

label: op dst, src ;comment

up to one memory address per instruction

caller saved: eax, ecx, edx
callee saved: ebx, esi, edi

ebp (stack frame base)
esp (last occupied, aligned stack entry)



x86 Highlights

mov eax, 17 mov eax, [ebp+8]
mov eax, ecx mov [ebp-12], eax

[basereg + indexreg * {2,4,8} + constant]

binary ops: mov, add, sub, imul, and, or, xor
unary ops: inc, dec, neg, not



x86 Highlights

lea dst, src; dst <- address of src
src should be a memory address computation
The & operator in C

jmp dst

cmp dst,src; sets eflags
je, jne, jz, jnz, jg, jng, jg, jnge, jl, jnl, jle, jnle



x86 Highlights

push src; esp <- esp - 4; memory[esp] <- src
pop dst; dst <- memory[esp]; esp <- esp + 4

call label; esp <- esp - 4; memory[esp] <- eip
ret; eip <- memory[esp]; esp <- esp + 4
leave; mov esp,ebp; pop ebp



x86 Highlights

Function Caller:
Push args (from right to left)

Execute call
Pop args

Function Callee:
Save/spill registers and allocate stack frame

Execute function (leave result in eax)
Restore registers and pop stack frame
Return



Generate code for AST using a visitor
● Visit children as necessary

For simple binary operations:
● Visit left child and save result
● Visit right child
● Apply operation to results

Tip: Keep trees in mind

Code Generation



Code Shape: Simple Operations

Local variable access:
mov eax, [ebp+16]

Location of variable stored in symbol table
Offsets are stored for objects



Code Shape: While Statements

while (cond) stmt

l1: <compute cond>
j_false l2

<compute stmt>
jmp l1

l2:



Code Shape: If-Else Statements

if (cond) stmt1 else stmt2

<compute cond>
j_false l3

<compute stmt1>
jmp l4

l3: <compute stmt2>
l4:



Code Shape: Conditionals

Conditionals are annoying in x86:
● There is no j_false operation
● Use cmp and conditional jumps instead

○ Don't always want the result of boolean 
operations left in a register

○ Requires special conditional processing
● You can still have boolean variables, so you 

still need the regular processing (leaving 
results in registers)



Code Shape: Switch Statements

switch (exp) { case 10: x = 11; case 12: x = 13; }

Could generate:
<evaluate exp into eax>
<jmp default if no table entry exists for value in eax>
mov eax, switch_table[eax*4-40]
jmp eax

L10: <code for x = 11>
L12: <code for x = 12>

What does switch_table need to look like?



Code Shape: Switch Statements

switch (exp) { case 10: x = 11; case 12: x = 13; }

...
mov eax, switch_table[eax*4-40]
...

.data switch_table
dd L10
dd L_default
dd L12
jmp eax



Code Shape: Arrays

exp1[exp2]

<evaluate exp1 into eax>
<evaluate exp2 into edx>
mv eax, [eax+4*edx]

Multidimensional arrays are more complicated
● Don't exist in Java



Coming up in next lectures/sections

More Complex Generation 
for OO Code



Questions?


