CSE 401 – Compilers

Lecture 9: SLR Parsers, FIRST/FOLLOW Sets
Michael Ringenburg
Winter 2013

Reminders/Announcements

• Project part 1 is due today!
 – I hope this isn’t a surprise for any of you. 😊
• Homework 2 will be assigned today or tomorrow. Due in one week.
• Project part 2 will be assigned this Wednesday. Due on Wednesday, February 13.
• Midterm in class on Friday, February 15.
LR(0) Parser for

0. \(S ::= E \$
1. \(E ::= T + E \$
2. \(E ::= T \$
3. \(T ::= x \$

What Do We Do?

• How do we solve conflicts like this?
 – Lookahead: look at the next symbol after the handle before deciding whether to reduce.
 – Simplest: SLR (Simplified LR) Parsing uses knowledge of which terminals can follow the LHS nonterminal of a reduction.
 – More complicated LALR and LR parsers actually store a lookahead symbol in items, corresponding to what can follow a particular instance of a reduction.
 • E.g., If \(B ::= ab \mid a \), then closure of \([X ::= a Be] \) could contain \([B ::= a, e] \) and \([B ::= ab, e] \) (character after ‘,’ is lookahead)
SLR Parsers

• Idea: Reduce conflicts by using information about what can follow a non-terminal to decide if we should perform a reduction: don’t reduce if the next input symbol can’t follow the resulting non-terminal
• We need to be able to compute FOLLOW(A) – the set of symbols that can follow A in any possible derivation
 – i.e., t is in FOLLOW(A) if any derivation contains A
 – To compute this, we need to compute FIRST(γ) for strings γ that can follow A

Calculating FIRST(γ)

• Sounds easy... If γ = X Y Z, then FIRST(γ) is FIRST(X), right?
 – But what if we have the rule X ::= ε?
 – In that case, FIRST(γ) includes FIRST(Y) ... and FIRST(Z) if Y can derive ε.
 – So, computing FIRST and FOLLOW requires knowledge of other symbols FIRST and FOLLOW, as well as which symbols can derive ε.
So How Do We Calculate FIRST/FOLLOW?

- Actually calculate three equations: FIRST, FOLLOW, and nullable
- **nullable(X)** is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin strings derived from γ.
 - Actually, for SLR construction, just need to calculate FIRST(X), where X is a single symbol (terminal or nonterminal)
- **FOLLOW(X)** is the set of terminals that can immediately follow X in some derivation
 - We only really need this for nonterminals, but we’ll compute it for everything for illustration.
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable

- We use another fixed point algorithm
 - Start with a simple initial state
 - Basically, FIRST(a) = {a} for all terminals a
 - Repeatedly apply four simple observations to modify the state
 - Stop when the state no longer changes
Observation 1

- Given a production $X ::= Y_1 Y_2 \ldots Y_k$
 - If every symbol on the right is nullable (or if there are 0 symbols on the right), then X is nullable.

 if $Y_1 \ldots Y_k$ are all nullable (or $k == 0$)
 set nullable[$X] = true

Observation 2

- Given a production $X ::= Y_1 Y_2 \ldots Y_k$ and $1 \leq i \leq k$
 - If the first $i-1$ symbols on the right are all nullable, then a string derived from X could begin with any terminal that could begin a string derived from Y_i.

 if $Y_1 \ldots Y_{i-1}$ are all nullable (or $i == 1$)
 add FIRST[Y_i] to FIRST[X]
Observation 3

- Given a production $X ::= Y_1 \ Y_2 \ ... \ Y_k$ and $1 \leq i \leq k$
 - If every symbol after Y_i is nullable, then anything that could follow X could also follow Y_i.

  ```
  if $Y_{i+1} \ ... \ Y_k$ are all nullable (or $i == k$ )
  add FOLLOW[$X$] to FOLLOW[$Y_i$]
  ```

Observation 4

- Given a production $X ::= Y_1 \ Y_2 \ ... \ Y_k$ and $1 \leq i \leq j \leq k$
 - If every symbol between Y_i and Y_j is nullable, then anything that could start Y_j could follow Y_i.

  ```
  if $Y_{i+1} \ ... \ Y_{j-1}$ are all nullable (or $i+1==j$)
  add FIRST[$Y_j$] to FOLLOW[$Y_i$]
  ```
Putting it all together

- **Initialization**
 - set all FIRSTs and FOLLOWs to be empty sets
 - set nullable to false for all symbols
 - set FIRST[a] to a for all terminal symbols a

repeat
 for each production $X := Y_1 Y_2 \ldots Y_k$
 if $Y_1 \ldots Y_k$ are all nullable (or if $k = 0$, i.e., empty string)
 set nullable[X] = true
 for each i from 1 to k and each j from $i+1$ to k
 if $Y_1 \ldots Y_{i-1}$ are all nullable (or if $i = 1$)
 add FIRST[Y_i] to FIRST[X]
 if $Y_{i+1} \ldots Y_k$ are all nullable (or if $i = k$)
 add FOLLOW[X] to FOLLOW[Y_i]
 if $Y_{i+1} \ldots Y_{j-1}$ are all nullable (or if $i+1=j$)
 add FIRST[Y_j] to FOLLOW[Y_i]
 Until FIRST, FOLLOW, and nullable do not change
Example

\[Z ::= d \]
\[Z ::= X Y Z \]
\[Y ::= \varepsilon \]
\[Y ::= c \]
\[X ::= Y \]
\[X ::= a \]

repeat
 for each production \(X ::= Y_1 Y_2 \ldots Y_k \)
 if \(Y_1 \ldots Y_k \) are all nullable (or if \(k = 0 \), i.e., empty string)
 set \text{nullable}[X] = true
 for each \(i \) from 1 to \(k \) and each \(j \) from \(i + 1 \) to \(k \)
 if \(Y_1 \ldots Y_i \) are all nullable (or if \(i = 1 \))
 add \text{FIRST}[Y_i] to \text{FIRST}[X]
 if \(Y_{i+1} \ldots Y_k \) are all nullable (or if \(i + 1 = j \))
 add \text{FIRST}[Y_i] to \text{FOLLOW}[Y_j]
 until \text{FIRST}, \text{FOLLOW}, \text{and nullable} do not change

\text{LR}(0) \text{ Reduce Actions (review)}

\begin{itemize}
 \item In a \text{LR}(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol
 \item Algorithm, where \(R \) is the set of reduction actions:
\end{itemize}

\textbf{Initialize} \(R \) to empty
\textbf{for each state} \(I \) in \(T \)
 \textbf{for each item} \([A ::= \alpha .]\) in \(I \)
 \textbf{add} \((I, A ::= \alpha)\) to \(R \)
SLR Construction

- This is identical to LR(0) – states, etc., except for the calculation of reduce actions.
- Algorithm, where \((I, a, A ::= \alpha)\) means reduce \(\alpha\) to \(A\) in state \(I\) if the lookahead is ‘a’:

```
Initialize R to empty
for each state \(I\) in \(T\)
    for each item \([A ::= \alpha .]\) in \(I\)
        for each terminal \(a\) in FOLLOW(A)
            add \((I, a, A ::= \alpha)\) to \(R\)
```

FIRST/FOLLOW for

0. \(S ::= E \dollar\)
1. \(E ::= T + E\)
2. \(E ::= T\)
3. \(T ::= x\)

repeat
 for each production \(X ::= Y_1 Y_2 ... Y_k\)
 if \(Y_1 \ldots Y_k\) are all nullable (or if \(k = 0\), i.e., empty string)
 set nullable[\(X\)] = true
 for each \(i\) from 1 to \(k\) and each \(j\) from \(i + 1\) to \(k\)
 if \(Y_i \ldots Y_j\) are all nullable (or if \(i = 1\))
 add FIRST[\(Y_j\)] to FIRST[\(X\)]
 if \(Y_{i+1} \ldots Y_k\) are all nullable (or if \(i = k\))
 add FOLLOW[\(X\)] to FOLLOW[\(Y_i\)]
 if \(Y_{i+1} \ldots Y_j\) are all nullable (or if \(i+1 = j\))
 add FIRST[\(Y_j\)] to FOLLOW[\(Y_i\)]
 Until FIRST, FOLLOW, and nullable do not change
LR(0) Parser for

0. \(S ::= E \) $
1. \(E ::= T + E \)
2. \(E ::= T \)
3. \(T ::= x \)

SLR Parser for

0. \(S ::= E \) $
1. \(E ::= T + E \)
2. \(E ::= T \)
3. \(T ::= x \)

Winter 2013 UW CSE 401 (Michael Ringenburg)
LR(1) grammars

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items

- An LR(1) item \([A ::= \alpha \cdot \beta, a]\) is
 - A grammar production \((A ::= \alpha \beta)\)
 - A right hand side position (the dot)
 - A lookahead symbol \((a)\)
- Idea: This item indicates that an \(A\) followed by an \(a\) would be consistent with the input the parser has seen up to this point.
- Item \([A ::= \alpha \cdot , a]\) means reduce to \(A\) if the next symbol (the lookahead) is \(a\).
 - Note **not** only if – may be item \([A ::= \alpha \cdot , b]\) in state
- Key difference is in how you compute the closure.
LR(1) Closure

\[
\text{Closure}(S) = \\
\text{repeat} \\
\text{for any item } [A ::= \alpha \cdot X \beta, c] \text{ in } S \\
\text{for all productions } X ::= \gamma \\
\text{for each } b \text{ in } \text{FIRST}(\beta c) \\
\text{add } [X ::= \cdot \gamma, b] \text{ to } S \\
\text{until } S \text{ does not change}
\]

LR(1) Tradeoffs

• LR(1)
 – Pro: extremely precise; largest set of grammars
 – Con: potentially VERY large parse tables with many states
 • This explosion happens during the last step of the Transition (aka Goto) computation, when you check if an equivalent state already exists. Now, you have to also check whether or not the lookaheads match, and they often don’t.
 • Previously, a single state could encode many uses of a handle in the grammar, but now the states encode more contextual information.
Extra State Example (Time Permitting)

0) $S' ::= S$
1) $S ::= aAa$
2) $S ::= bAb$
3) $A ::= x$

LALR(1)

• Variation of LR(1), but merge any two states that differ only in lookahead (all items identical apart from lookahead).
 – Example: these two would be merged
 $[A ::= x . , a]$
 $[A ::= x . , b]$
LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
 - Somewhat surprising result: will actually have the same number of states as SLR parsers, even though LALR(1) are more powerful.
 - After the merging, acts like SLR parser with “smarter” FOLLOW sets (may be specific to particular handles).
- LALR(1) may have conflicts where LR(1) would not (but in practice this doesn’t happen often)
- Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, …)

Language Heirarchies
Coming Attractions

• ASTs – what you do with the parsing!
 – Also, the visitor pattern (useful for traversing the AST, and doing work at each node).
 – Visitor pattern has tripped people up during prior instances of this class, so you’ll get it twice – once from me and once from the TAs in section.

• LL(k) Parsing – Top-Down/Recursive Descent Parsers
 – LL Parsers: less powerful, but you can write them completely by hand.