CSE 401 — Compilers

Lecture 9: SLR Parsers, FIRST/FOLLOW
Sets

Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Reminders/
Announcements
* Project part 1 is due today!
— | hope this isn’t a surprise for any of you. ©

* Homework 2 will be assigned today or
tomorrow. Due in one week.

* Project part 2 will be assigned this
Wednesday. Due on Wednesday, February 13.

* Midterm in class on Friday, February 15.

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

0. S::=ES$
1. E:=T+ E

LR(O) Parser for 5 si- 7
3. T:i=Xx

’ What Do We Do?

* How do we solve conflicts like this?

— Lookahead: look at the next symbol after the handle
before deciding whether to reduce.

— Simplest: SLR (Simplified LR) Parsing uses knowledge
of which terminals can follow the LHS nonterminal of
a reduction.

— More complicated LALR and LR parsers actually store
a lookahead symbol in items, corresponding to what
can follow a paritcular instance of a reduction.

* E.g., If B::=ab | a, then closure of [X::=a.Be] could contain
[B::=.a, e] and [B::=.ab, e] (character after *, is lookahead)

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

9 SLR Parsers

* |dea: Reduce conflicts by using information about
what can follow a non-terminal to decide if we
should perform a reduction: don’t reduce if the
next input symbol can’t follow the resulting non-
terminal

* We need to be able to compute FOLLOW(A) — the
set of symbols that can follow A in any possible
derivation

— i.e., tisin FOLLOW(A) if any derivation contains At

— To compute this, we need to compute FIRST(y) for
strings y that can follow A

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Calculating FIRST(y)

* Sounds easy... If y=XYZ, then FIRST(y) is
FIRST(X), right?
— But what if we have the rule X ::= €?

— In that case, FIRST(y) includes FIRST(Y) ... and
FIRST(Z) if Y can derive €.

— So, computing FIRST and FOLLOW requires
knowledge of other symbols FIRST and FOLLOW,
as well as which symbols can derive «.

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

So How Do We Calculate
FIRST/FOLLOW?

* Actually calculate three equations: FIRST, FOLLOW, and
nullable

* nullable(X) is true if X can derive the empty string
* Given a string y of terminals and non-terminals, FIRST(y) is
the set of terminals that can begin strings derived fromy.

— Actually, for SLR construction, just need to calculate FIRST(X),
where X is a single symbol (terminal or nonterminal)

* FOLLOW(X) is the set of terminals that can immediately
follow X in some derivation

— We only really need this for nonterminals, but we'll compute it
for everything for illustration.

* All three of these are computed together

Winter 2013 UW CSE 401 (Michael Ringenburg)

Computing FIRST, FOLLOW,
and nullable

* We use another fixed point algorithm

— Start with a simple initial state
* Basically, FIRST(a) = {a} for all terminals a

— Repeatedly apply four simple observations to
modify the state

— Stop when the state no longer changes

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

9 Observation 1

* Given a production X::=Y, Y, .. Y,
— If every symbol on the right is nullable (or if there
are 0 symbols on the right), then X is nullable.

if ¥, .. ¥, are all nullable (or k == 0)
set nullable[X] = true

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Observation 2

* GivenaproductionX =Y, Y,...Y,and1<i<k

— If the first i-1 symbols on the right are all nullable,
then a string derived from X could begin with any
terminal that could begin a string derived from Y..

if Y, .. ¥; ; are all nullable (or i == 1)
add FIRST[Y;] to FIRST[X]

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

9 Observation 3

* Given aproductionX::=Y, Y, .. Y, and1<i<k

— If every symbol after Y; is nullable, then anything
that could follow X could also follow Y.

if Y,,; .. ¥ are all nullable (or i
add FOLLOW[X] to FOLLOW[Y;]

I
I
e

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Observation 4

* GivenaproductionX =Y, Y, ... ¥, and1<i<j<k

— If every symbol between Y; and Y; is nullable, then
anything that could start Y; could follow Y;,

if ¥;,, .. ¥y, are all nullable (or i+l==j)
add FIRST[Y;] to FOLLOW[Y,]

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

9 Putting it all together

* Initialization
set all FIRSTs and FOLLOWSs to be empty sets
set nullable to false for all symbols
set FIRST[a] to a for all terminal symbols a

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Putting it all together

repeat
for each production X:=Y, Y, .. Y,
if Y, ... Y, are all nullable (or if k=0, i.e., empty string)
set nullable[X] = true
for eachi from 1to k and eachj fromj+1to k
if Y, ... ¥, are all nullable (or if i = 1)
add FIRST[Y,] to FIRST[X]
if ¥;,1 ... Y areall nullable (orifi=k)
add FOLLOW[X] to FOLLOWTIY;]
if Yi,; ... Y4 are all nullable (or if i+1=j)
add FIRST[Y,] to FOLLOW[Y,]
Until FIRST, FOLLOW, and nullable do not change

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

Z:=
Example Z:=XYZ
Yi=¢
Yi=c
X:=
X:=a
repeat

for each produchon X:=YY,.

ehf”ngiy o har? all nullable %or |fk 0 ie.,

set nullable[X] = true
for each i from 1 to kand eachj fromi+1to k
if Y, ... Y., are all nullable (orif i =1)
add FIRST[Y,] to FIRST[X]
if ¥,,, ... Y are all nullable (or if i = k)
add FOLLOW[X] to FOLLOW[Y;]
if Y;,1 ... Y, are all nullable (or if |+1-j)
add FIRST[Y,] to FOLLOW[Y,;]
Until FIRST, FOLLOW, And nullable do not change

LR(O) Reduce Actions
(review)

* In a LR(0) parser, if a state contains a reduction, it
is unconditional regardless of the next input
symbol

* Algorithm, where R is the set of reduction actions:
Initialize R to empty
for each state I in T

for each item [A ::= a .] in T
add (I, A ::= a) to R

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

9 SLR Construction

* This is identical to LR(0) — states, etc., except
for the calculation of reduce actions.

e Algorithm, where (I, a, A ::= a) means reduce
o to A in state | if the lookahead is ‘@’

Initialize R to empty
for each state I in T
for each item [A ::= o .] in T
for each terminal a in FOLLOW(A)
add (I, a, A ::= a) to R

Winter 2013 UW CSE 401 (Michael Ringenburg)

=F$
T+ E

~ mmu
\'

0
FIRST/FOLLOW for 5
3

repeat
for each productlon X:=Y, Y.
if Y. are all nullable %or |fk 0 ie.,
empty’st r‘i Y’
set nuIIabIe[X] true
for each i from 1 to k and eachj fromi+1to k
if Y; ... ¥, are all nullable (or if i = 1)
add FIRST[Y;] to FIRST[X]
if ¥;,1 ... Y are all nullable (or if i = k)
"3dd FOLLOW[X] to FOLLOW[Y;]
if Y1 ... Y. are all nullable (or if I+1—j)
‘add FIRST[Y,] to FOLLOW[Y,;]
Until FIRST, FOLLOW, and nullable do not change

2/4/13

0. S::=ES$
1. E::=T+ E
LR(O) Parser for 2 f.=7
3. T::=
@ @ X + $ E T
S:=.E$ E S:=E.$ 1 | s 92 o
E::=.T+E 2 acc
E = T T@ 3 r2 s4,r2 r2
Ti=.xX |—Eu=T.+E a | s 6 o
Ex=T.
X 5 3 3 r3
S G + T 6 r1 r1 rl
E::=T+.E
(6 e |eiTI*E FOLLOW(T) = { +, $ }
Ex=T+E E;:= X FOLLOW(E) ={$ }
Winter 2013 UW CSE 401 (Michael Ringenburg)
0. S::=E$
1. E::=T+ E
SLR Parser for 2 r:=7
3. T:=X
@ @ X + $ E T
S:=.E$ E,S::=E.$ 1 | s g2 g3
E::=.T+E 2 acc
E:=.T T@ 3 s4 r2
Tu=.x — E:=T.+E 4 | s % g3
E::=T.
X 5 r3 r3
+ T 6 rl
X 4
E::=T+.E
&) e |EisT*E FOLLOW(T) = { +, $ }
Ex=T+E Eim . x FOLLOW(E) ={ $ }
Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

9 LR(1) grammars

* Many practical grammars are SLR
* LR(1) is more powerful yet

* Similar construction, but notion of an item is
more complex, incorporating lookahead
information

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ LR(1) Items

* AnLR(1)item[A:==a., a]is
— A grammar production (A ::= af})
— Aright hand side position (the dot)
— A lookahead symbol (a)

* Idea: This item indicates that an A followed by an
a would be consistent with the input the parser
has seen up to this point.

* Item[A ::=a ., a] means reduce to A if the next
symbol (the lookahead) is a.

— Note not only if — may be item [A ::= .., b] in state
* Key difference is in how you compute the
closure.

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

9 LR(1) Closure

Closure(S) =
repeat
foranyitem[A:i=a . XpB,c]in S
for all productions X ::=y
for each b in FIRST(c)
add [X::=.y,b]Jto S
until S does not change

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ LR(1) Tradeoffs

. LR(1)
— Pro: extremely precise; largest set of grammars

— Con: potentially VERY large parse tables with many
states

* This explosion happens during the last step of the Transition
(aka Goto) computation, when you check if an equivalent
state already exists. Now, you have to also check whether
or not the lookaheads match, and they often don’t.

* Previously, a single state could encode many uses of a
handle in the grammar, but now the states encode more
contextual information.

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

Extra State Example
(Time Permitting)

0)S' ::=5S$%
1) S ::= aAa
2)S ::=bAb
3)A =X

’ LALR(1)

* Variation of LR(1), but merge any two states
that differ only in lookahead (all items
identical apart from lookahead).

— Example: these two would be merged
[A:=x.,a]
[A:=x.,Db]

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

’ LALR(1) vs LR(1)

* LALR(1) tables can have many fewer states than
LR(1)

— Somewhat surprising result: will actually have the
same number of states as SLR parsers, even though
LALR(1) are more powerful.

— After the merging, acts like SLR parser with “smarter”
FOLLOW sets (may be specific to particular handles).

* LALR(1) may have conflicts where LR(1) would
not (but in practice this doesn’t happen often)

* Most practical bottom-up parser tools are
LALR(1) (e.g., yacc, bison, CUP, ...)

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Language Heirarchies

unambiguous grammars ambiguous
grammars

/ T\ LR(K) \

LR(0)

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

g Coming Attractions

e ASTs — what you do with the parsing!

— Also, the visitor pattern (useful for traversing the
AST, and doing work at each node).

— Visitor pattern has tripped people up during prior
instances of this class, so you’ll get it twice — once
from me and once from the TAs in section.

 LL(k) Parsing — Top-Down/Recursive Descent
Parsers

— LL Parsers: less powerful, but you can write them
completely by hand.

Winter 2013 UW CSE 401 (Michael Ringenburg)

2/4/13

