CSE 401 — Compilers

Lecture 8: LR Parser Construction
Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Reminders/
Announcements
* Project part 2 is due Monday.

* Next week:

— We'll assign project part 2 (due 2 weeks later) — we
should get through the necessary material by
Wednesday, and you’ll review it in Sections on
Thursday.

— We'll also assign homework 2 (due 1 week later).
* Changed the schedule on the web slightly, in

order to make sure we get through everything
you need for project part 2.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 Agenda

* Finish describing shift-reduce and reduce-
reduce conflicts (from last lecture).

e Building LR parser DFAs
— LR(0) state construction
— Adding FIRST, FOLLOW, and nullable (SLR parsing)

— Briefly: LR(1), LALR, and the hierarchy of parsers/
grammars.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Quick Review

* Anitem is a marked production (a . at some
position on the right hand side)
— [S:=.aABe][S::=a.ABe][S::=aA.Be][S::=aAB.e€]

[S::=aABe]
—[Au=.Abc] [Au=A.bc] [A:=Abc.] S:i=aABe
—[A:=.b][Au=b] A= Abc|b
—[Bu=.d][B:=d.] B:=d

* A parser DFA state corresponds to a set of items,
where each item corresponds to a handle that we
might be scanning in that state, as well as how
much of the handle we have already read.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

Review: DFA States & Items

€ ©
—-@i»accept 5 S::=aABe IL-| S = aABe.
@ _° ® 5
i; aAf)‘fe A jz ,anbge —-|b A= Ab.c
A= B:=.d C
b d @
@ @ A ::= Abc.
Asizb Bizd S::= aABe
Au=Abc|b
B::=

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ ltems & Shift/Reduce

* What do we do if the dot is at the end of an
item?
— We've seen the entire handle, so ...
— Reduce by the production!

 What if the dot is not at the end of the item?

— We need to read more input to find the rest of the
handle, so ...

— Shift!

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 Problems with Grammars .

* Grammars can cause problems when
constructing a LR parser

— Recall that states may (and often do) correspond to
multiple items

— What if one item in a state indicates we should shift
(part way through), and another indicates we should
reduce (end)?

* Shift-reduce conflict

— What if we are at the end of two different items in
then state, indicating two different reductions?

* Reduce-reduce conflict

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Shift-Reduce Conflicts

* Situation: both a shift and a reduce are
possible at a given point in the parse
(equivalently: in a particular state of the DFA)

 Classic example: if-else statement (condition
omitted to save space)
S:=ifthenS | ifthen Selse S

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

Parser States

1. S::=ifthen S
* State 3 has a shift- 2. S::=ifthen Selse S
reduce conflict
— Can shift past else into @) |Su=.ifthen S
state 4 (s4) S::=.ifthen Selse S
— Can reduce (rl) 'ﬂhénl
S = ifthen S ()| Su=ifthen. S

S::=ifthen. Selse S

!

(Note: some items omitted in @ S::=ifthen S.
states 2-4 to save space) S:=ifthen S.else S
els

(@ | S::= ifthen Selse . S

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Solving Shift-Reduce
Conflicts

* Fix the grammar (like we saw before)
— Done in Java reference grammar, others

* Use a parser generator with a “longest match”
rule —i.e., if there is a conflict, choose to shift
instead of reduce
— Does exactly what we want for if-else case

— Guideline: a few shift-reduce conflicts are fine, but
be sure they do what you want

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 Reduce-Reduce Conflicts [

e Situation: two different reductions are
possible in a given state

e Contrived example

1. S:=A
2. S:=B
3. A:x=x
4, B:=x

* What happens when you try to parse x?
— Which reduction do you use initially? r3 or r4?

Winter 2013 UW CSE 401 (Michael Ringenburg)

Parser States for

> 00

H N
X X T>

®
W
W >

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

1. Si:=A
Parser States for 2 2:=58
4, B:i=x
Of
A= X
B:i:= X
Winter 2013 UW CSE 401 (Michael Ringenburg)
1. Sii=A
Parser States for 2 #:=58
4, B::=x
® § _ :g * State 2 has a reduce-
g =X reduce conflict (r3, r4)
=X
®
Ali=X
B:=x.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

Handling Reduce-Reduce
Conflicts

* These normally indicate a problem with the
grammar — can’t be parsed by this type of parser.

* How to fix?

— Use a different kind of parser generator that takes
lookahead information into account when
constructing the states

* SLR, LALR, LR(1)

* Most practical tools use this information

* However, reduce-reduce conflicts are still possible —these
will only eliminate some.

— Fix the grammar

Winter 2013 UW CSE 401 (Michael Ringenburg)

Another (more realistic)
Reduce-Reduce Conflict

* Suppose the grammar separates arithmetic
and boolean expressions, so you can’t use a
boolean typed identifier in an arithmetic
expression (and vice versa):

expr ::= aexp | bexp
aexp ::= aexp * aident | aident
bexp ::= bexp && bident | bident
aident ::= id
bident ::=id
* This will create a reduce-reduce conflict

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 Covering Grammars

* Asolution is to merge aident and bident into a single
non-terminal (or use id in place of aident and bident
everywhere they appear)

* Thisis a covering grammar

— Includes some programs that are not generated by the
original grammar (allows booleans in arithmetic, and vice
versa).

— Use the type checker or other static semantic analysis to
weed out illegal programs later

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Agenda

* Building LR parser DFAs
— LR(0) state construction
— Adding FIRST, FOLLOW, and nullable (SLR parsing)

— Briefly: LR(1), LALR, and the hierarchy of parsers/
grammars.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 LR State Machine

* Our LR parsing algorithm requires a DFA that
recognizes viable prefixes/handles.

— We constructed one by hand for our sample language.

* How do we do it in general?

— Real answer: You don’t, you use a tool! © But we
should still understand the process.

— Recall that the language generated by a CFG is
generally not regular, but

— Language of handles and viable prefixes is regular

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Building the LR(0) States

* Example grammar

Su=(L)
Su=x
L:=S
L:=L,S

— Question: What language does this grammar generate?

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 Building the LR(0) States

* Example grammar
§’:=SS

— We add a production S’ with the original start symbol
followed by end of file (). If we get to the end of this item
[S’ ::= SS.], we accept rather than reduce.

— Question: What language does this modified grammar
generate?

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Start of LR Parse

0. S'::=S%

1. S::=(L)
* At the beginning of the parse: % f :‘g

4. Lu=1L,S

— Stack is empty

— Input is the right hand side of §’, i.e., S S

— Initial configuration is [S”::=. S §]

— But, since position is just before S, we are also just
before anything that can be derived from S

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 Initial state

0. S"::=5%
5’::: . 5$ ~———start 1. S::=(L)
Su=.(L) Sox
Sz x " | " completion 4 L;;L,S

* Astate is just a set of items
— Start: an initial set of items
— Completion (or closure): additional productions

whose left hand side appears just to the right of
the dot in some item already in the state (i.e., the

next character after the dot)

UW CSE 401 (Michael Ringenburg)

Winter 2013

’ Shift Actions (1)

* To shift past the x, add a new state with the
appropriate item(s), and add the closure.
— In this case, a single item; the closure adds

nothing
— This state will lead to a reduction since no further

shift is possible (end of item)

Winter 2013 UW CSE 401 (Michael Ringenburg)

0. S':=S5%
Su:=.5% § i‘ﬁfii“
Su=.(L) Su=X. 3. L5=S
S:i=.X 4, L==L,S

1/25/13

9 Shift Actions (2)

0. = 5%
S'u=.5% (Siu=(.L) L Su=(L)
Su=.(L) Lu=.L, S| 5 70%
Si=.X L:=.5 4. Lu=1,S
Su=.(L)
S:i=.X

* If we shift past (, we’re at the beginning of L

e The closure adds all productions that start with
L, which requires adding all productions starting
with S

Winter 2013 UW CSE 401 (Michael Ringenburg)

 If we reduce to S, and popping the rhs exposes
the first state, we can consume an S in the
first item. Add a goto transitionon S for this.

Winter 2013 UW CSE 401 (Michael Ringenburg)

0. S::=S$
S'i=.5% | o é‘ﬁffi”
Su=.(L) S5':=§5.% S
Si=.X 4. Lu:=1L,S

1/25/13

9 Basic Operations

* Closure (S)

— Adds all items “implied by” items already in S. If a
nonterminal is directly to the right of the dot, add
items for the start of its productions (transitively).

* Transition (I, X) (sometimes called Goto, but | find this
misleading)

— |'is a set of items (typically the items for a state)
— X is a grammar symbol (terminal or non-terminal)

— Transition moves the dot past the symbol X in all
appropriate items in set /

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Closure Algorithm

* Fixed point algorithm for Closure
* Closure (S) =

repeat

foranyitem [A:=a.XP]inS
for all productions X ::=v
add [X::=.y]to S
until S does not change
return S

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 Transition Algorithm

e Transition (I, X) =
set new to the empty set
foreachitem[A:=a . X B]in/
add [A::=a X. B] to new
return Closure (new)

* This may create a new state, or may return an
existing one

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ LR(0) Construction

 First, augment the grammar with an extra
start production §” ::=S5 S

Let T be the set of states

Let E be the set of edges

Initialize T to Closure ([S”::=.5S])
Initialize E to empty

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

1/25/13

LR(0) Construction
Algorithm

repeat
for each state/ inT
foreachitem[A:=a.X B]in/
Let new be Transition (1, X')
Add new to T if not present
Add | X+ new to E if not present
until E and T do not change in this iteration

Footnote: For symbol $ (only appears in items of production S’ ::=S $), we
don’t compute transition (I, S); instead, we make this an accept action.

Winter 2013 UW CSE 401 (Michael Ringenburg)

0. §'::=5%
1. Su=(L)
Example: States for 2 $:=x
4. Lx=L,S

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Building the Parse Tables

* For each edge | =—J

— if Xis a terminal, put 'sj in column X, row | of the
action table (shift to state)

— If X is a non-terminal, put gj in column X, row / of
the goto table

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Building the Parse Tables | »

* For each state / containing an item
[S” ::=5.S], put accept in column S of row /

* Finally, for any state containing
[A ::=y.] put action rn (reduce) in every
column of row / in the table, where n is the
production number

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

eI
Example: Tables for 2 si=x
4, L:=L,S

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Where Do We Stand?

* We have built the LR(0) state machine and
parser tables

— No lookahead yet
— Different variations of LR parsers add lookahead
information, but basic idea of states, closures, and

edges remains the same

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

9 A Grammar that is not
LR(O)

* Build the state machine and parse tables for a
simple expression grammar

S:=ES
E:=T+E
E:=T
T:=X
Winter 2013 UW CSE 401 (Michael Ringenburg)

0. S::=E$
1. E::=T+ E
LR(O) Parser for 2 .- 7
3. T:=X
® @ .
2::=._I|E_$E E S::=E.$|—»Accept
=T+
E:=.T T@
T:=.x —E::=T.+E
E::=T.
X
Tu=x. x (& ¥ T
E::=T+.E
@ E:=.T+E
Eu=T+E bt JE==-T
Tu=.X

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

®© @

S:=.E$ E S:=E.$$

Ex=.T+E

Ex=.T T@

Tiu=.x —Eu=T.+E
E.=

X
+ T

5
E::=T+.E
E::=.T+E
E::=.T
Tiu=.X

o U1 A W N

0.
LR(O) Parser for ;5
3.

A

~mmWn

E$
=T+E

;

X

E T

First, add the shift and goto
transitions (edges of the

DFA).

Winter 2013 UW CSE 401 (Michael Ringenburg)
0. Si:=ES$
1. E::=T+ E
LR(O) Parser for 2. r.= 7
3. T:=X
@ @ X + $ E T
Su=.E$ |C[Su=E.$ ¥ Acl | o 92 g3
E::=.T+E 2
E:=.T T@ 3 s5
Tu=.x — E:=T.+E 4
E::=T.
X 5 s4 g6 g3
+ T 6
=T+.E = Then, add the reduce and
= 1 +E accept actions.
=X

Winter 2013

UW CSE 401 (Michael Ringenburg)

1/25/13

0. S::=ES$
1. E::=T+ E
LR(O) Parser for 2. f::= 1
3. T::=X
@ @ X + $ E T
Su=.E$ | S::=E.$|_.$ Act | ¢ 92 g3
E::=.T+E 2 acc
Ex=.T T@ 3 2 s5r2 r2
Tu=.x — Ex=T.+E 4 B 13 3
Ex=T.
X 5 s4 g6 g3
+ T 6 rl ri rl
X 5
Eu=T+.E = Uh-oh! State 3 is has two
(6) Ex=.T+E possible actions on +
E:-T+E E [E::=.T .
n= To= . x = shift 4, or reduce 2
= .. Grammar is not LR(0)
Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Next Time

* How do we use lookahead to solve this issue?

— We'll show the simplest way, known as SLR (simplified
LR) parsing.

— We'll also briefly describe how lookahead is used in
the more complex LALR(k) and LR(k) parsers.

» Start describing how to create a parser with CUP,
and use it to build an AST (likely won’t finish until
Wednesday).

— This is what you’ll do in your project.

— Plus, how to use the visitor pattern to work with your
AST!

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/25/13

