Today’s Agenda

- Last time we reviewed languages and grammars, and briefly started discussing regular expressions.
- Today I’ll restart the regular expression discussion, since it felt a bit rushed.
- I’ll then describe how to build finite automata that recognize regular expressions.
- On Monday, I’ll discuss how scanners are implemented.
Announcements

• Homework 1 will be out later today.
 – I’ll post on course website and send email.
 – Due next Friday (January 18).
• First part of the project (the scanner) will be assigned early next week.

Regular Expressions

• Defined over some alphabet Σ
 – For programming languages, alphabet is usually ASCII or Unicode
• If re is a regular expression, $L(re)$ is the language (set of strings) generated by re
Fundamental REs

<table>
<thead>
<tr>
<th>(re)</th>
<th>(L(re))</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>{ a }</td>
<td>Singleton set, for each symbol (a) in the alphabet (\Sigma)</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>{ \varepsilon }</td>
<td>Empty string</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>{}</td>
<td>Empty language</td>
</tr>
</tbody>
</table>

These are the basic building blocks that other regular expressions are built from.

Operations on REs

<table>
<thead>
<tr>
<th>(re)</th>
<th>(L(re))</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(rs)</td>
<td>(L(r)L(s))</td>
<td>Concatenation: a string from (r) followed by a string from (s)</td>
</tr>
<tr>
<td>(r</td>
<td>s)</td>
<td>(L(r) \cup L(s))</td>
</tr>
<tr>
<td>(r^*)</td>
<td>(L(r)^*)</td>
<td>Kleene closure: sequence of 0 or more strings from (r)</td>
</tr>
</tbody>
</table>

Precedence: \(* \) (highest), concatenation, \(| \) (lowest) Parentheses can be used to group REs as needed
Examples

<table>
<thead>
<tr>
<th>re</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>single + character</td>
</tr>
<tr>
<td>!</td>
<td>single ! character</td>
</tr>
<tr>
<td>!=</td>
<td>2 character sequence “!=“</td>
</tr>
<tr>
<td>xyzzy</td>
<td>5 character sequence “xyzzy”</td>
</tr>
<tr>
<td>(1</td>
<td>0)*</td>
</tr>
<tr>
<td>(1</td>
<td>0)(1</td>
</tr>
<tr>
<td>0</td>
<td>1(1</td>
</tr>
</tbody>
</table>

Abbreviations

The basic operations generate all possible regular expressions, but there are common abbreviations used for convenience. Some examples:

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Meaning</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>r+</td>
<td>(rr*)</td>
<td>1 or more occurrences</td>
</tr>
<tr>
<td>r?</td>
<td>(r</td>
<td>ε)</td>
</tr>
<tr>
<td>[a-z]</td>
<td>(a</td>
<td>b</td>
</tr>
<tr>
<td>[abxyz]</td>
<td>(a</td>
<td>b</td>
</tr>
</tbody>
</table>
Exercise:
What do these represent?

<table>
<thead>
<tr>
<th>re</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[abc]+</td>
<td></td>
</tr>
<tr>
<td>[abc]*</td>
<td></td>
</tr>
<tr>
<td>[0-9]+</td>
<td></td>
</tr>
<tr>
<td>[1-9][0-9]*</td>
<td></td>
</tr>
<tr>
<td>[a-zA-Z][a-zA-Z0-9]*</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations

• Many systems allow abbreviations to make writing and reading definitions or specifications easier

 name ::= re

 – Restriction: abbreviations may not be circular (recursive) either directly or indirectly (else would be not be a regular language)
 • digit ::= [0-9] is okay
 • number ::= digit number is not
Example

• Possible syntax for numeric constants

\[
\begin{align*}
\text{digit} & :=[0-9] \\
\text{digits} & := \text{digit}+ \\
\text{number} & := \text{digits} \ (, \text{digits})? \\
& \quad ([eE] (\ + \mid -)? \text{digits}) ?
\end{align*}
\]

• Notice that this allows (unnecessary) leading 0s, e.g., 00045.6. (0, or 0.14 would be necessary 0s.)

• How would you prevent that?

Example

• Possible syntax for numeric constants

\[
\begin{align*}
\text{digit} & :=[0-9] \\
\text{nonzero_digit} & := [1-9] \\
\text{digits} & := \text{digit}+ \\
\text{number} & := (0 \mid \text{nonzero_digit} \text{digits})? \\
& \quad (. \text{digits})? \\
& \quad ([eE] (\ + \mid -)? \text{digits}) ?
\end{align*}
\]
Recognizing REs

- Finite automata can be used to recognize languages generated by regular expressions
- Can build by hand or automatically
 - Reasonably straightforward, and can be done systematically
 - Tools like Lex, Flex (for compilers written in C++), and JFlex (for compilers written in Java) do this automatically, given a set of REs.

Finite State Automaton

- Review from your CS theory class ...
- A finite set of states
 - One marked as initial state
 - One or more marked as final states
 - States sometimes labeled or numbered
- A set of transitions from state to state
 - Each labeled with symbol from Σ (the alphabet), or ε
 - The symbols correspond to characters in the input stream.
Finite State Automaton

- Operate by reading input symbols (usually characters)
 - Transition can be taken if labeled with current symbol
 - ε-transition can be taken at any time
- Accept when final state reached and no more input
 - Slightly different in a scanner, where the FSA is used as a subroutine to find the longest input string that matches a token RE.
- Reject if no transition possible, or no more input and not in final state (DFA)

Example: FSA for “pig”
DFA vs NFA

- Deterministic Finite Automata (DFA)
 - No choice of which transition to take
- Non-deterministic Finite Automata (NFA)
 - Choice of transition in at least one case
 - \(\varepsilon \) transitions (arcs): If the current state has any outgoing \(\varepsilon \) arcs, we can follow any of them without consuming any input
 - Accept if some way to reach a final state on given input
 - Reject if no possible way to final state
 - Modeling choice option 1: guess path, backtrack if rejects
 - Option 2: “clone” at choice point, accept if any clone accepts

Example NFA

Input 1: GOSEAHAWKS

Status: Executing...
FAs in Scanners

- Want DFA for speed (no backtracking or cloning)
- But conversion from regular expressions to NFA is easier
- Luckily, there is a well-defined procedure for converting an NFA to an equivalent DFA

From RE to NFA: base cases

These correspond to the “Fundamental REs” shown earlier.

- NFA for symbol ‘a’
- NFA for empty string (ε)
- NFA for empty set (∅)
Concatenation: \(r s \)

The idea: When we find a string that matches the regular expression \(r \), we start trying to match the regular expression \(s \). Since this is an NFA, it’s okay if we guess wrong – we will make an \(\varepsilon \) transition from every prefix of the input that matches \(r \), and thus check all possible matches.

Union/Combination: \(r | s \)

The idea: Non-deterministically check if the input matches either \(r \) or \(s \). If either sub-machine reaches a final state, jump to the union machine’s final state. If the entire input has been consumed at this point (i.e., the entire string matches \(r \) or \(s \)), the union machine will accept.
Kleene star: r^*

The idea: At the start node (N1), we attempt to match either the empty string (to account for the possibility of zero occurrence of r) or a single match of r. Every time the r machine find a potential match, it non-deterministically jumps back to N1 and repeats the process. Since this is an NFA, it’s okay if we guess the wrong match of r – we’ll try all of them.

Example

• Draw the NFA for $(ab | c)$:
Example

• Draw the NFA for \((ab|c)\):

```
  a ─> O ─> b
  ^          |
  |          v
  c ─> O
```

Example

• Draw the NFA for \((ab|c)\):

```
  a ─> ε ─> b ─> ε ─> O
  ^          |
  |          v
  c ─> O
```
• Draw the NFA for \((ab|c)\):

\[
\begin{array}{c}
\text{a} \quad \text{b} \\
\end{array}
\]

(If a state has a single outgoing \(\varepsilon\)-transition, and no other transitions, you can merge it into the target.)

Example

Winter 2013 UW CSE 401 (Michael Ringenburg)
Exercise

• Draw the NFA for: b(at | ag) | bug

From NFA to DFA

• Subset construction: construct a DFA from the NFA, where each DFA state represents a set of NFA states
• Key idea: the state of the DFA after reading some input is the set of all NFA states that could have reached after reading the same input
• Algorithm: example of a fixed-point computation
 – Find ε-closure (all states reachable via 0 or more ε-transitions) of start state. Create a DFA state corresponding to this set. Add it to the unvisited list.
 – While there exist unvisited DFA states, select one (call it \(d \)):
 • For each symbol \(s \) in the alphabet, determine the NFA states reachable by any NFA state in the set corresponding to \(d \).
 • Determine the ε closure of these states. Create a transition from \(d \) on symbol \(s \) to a state corresponding to this closure set.
 • If the state corresponding to this set is new, add it to the unvisited list.
Example

- Convert NFA to a DFA:

\[
\begin{array}{c}
\text{1, 2, 5} \\
\end{array}
\]
• Convert NFA to a DFA:

Example
Example

• Convert NFA to a DFA:

Winter 2013
UW CSE 401 (Michael Ringenburg)
Next Time

• Implementing a scanner
 – By hand
 – Via automated tools
• Enjoy your weekend
 – Go Hawks!