CSE 401 — Compilers

Lecture 24: SSA, cont.
Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg) 1

’ Reminders

* Project Part 4 due on Friday, March 15.

* There will be a short project report due on
Sunday, March 17 — at most one late day may be
used for the report (if you have any left).

— One-two pages

— See posted assignment

* Guest lectures Wednesday and Friday

— Wednesday: Real world parsing, David Mizell,
YarcData (Cray)

— Friday: Register allocation, Preston Briggs, UW/PNNL

Winter 2013 UW CSE 401 (Michael Ringenburg) 2

9 Review: SSA Form

_ if ()
if (..) a, = x;
a = xj else
else — a, = y;
— o 2 v
b ? _.Y' a; = P(ay, ay);
= a; b, = a,;

* An IR where each variable has exactly one
definition
— Within a basic block, this is easy — simply need to
create a new variable (by renumbering) at each
definition.
— At program merge points, add ®-functions

Winter 2013 UW CSE 401 (Michael Ringenburg)

’Converting To SSA Form/ It

» Basic idea
— First, add ®-functions

— Then, rename all definitions and uses of
variables by adding subscripts

 Renaming is straightforward. Inserting ®-
functions is where things get a little tricky.

Winter 2013 UW CSE 401 (Michael Ringenburg) 4

0’ Inserting ®-Functions

« Could simply add ®-functions for every
variable at every join point

« But
— Wastes way too much space and time
— Not needed

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

’ When to Insert a

® -Function

« We need a ®-function for variable a at entry to
block z whenever

— There are blocks x and y, both containing definitions of a,
and x =y

— There are nonempty paths from x to z and from y to z
— These paths have no common nodes other than z
* i.e., this is where the paths first merge

Winter 2013 UW CSE 401 (Michael Ringenburg) 6

0’ Some Details

« The start node of the control flow graph is
considered to define every variable (possibly
just to Undefined)

— Makes following construction simpler
« Each @ -function itself defines a variable,

which may create the need for a new ®-
function.

— So we need to keep adding ® -functions until
things converge (no more changes).

» How do we do this efficiently?
— Using a new concept: dominance

Winter 2013 UW CSE 401 (Michael Ringenburg) 7

’ Dominators

« Definition
— A block x dominates a block y if and only if every path
from the entry of the control-flow graph to y includes x
* By definition, x dominates x
« We can associate a Dom(inator) set with each CFG
node
— The set of all basic blocks that must execute before x
— | Dom(x) | =1
» Properties:
— Transitive: if a dom b and b dom ¢, then a dom ¢
— No cycles, thus can view dominators a tree

Winter 2013 UW CSE 401 (Michael Ringenburg) 8

Winter 2013 UW CSE 401 (Michael Ringenburg)

Dominator Tree

’ Dominators and SSA

« Important property of SSA: definitions must
dominate uses

— In other words, the single assignment must occur
prior to any uses of the variable. (Although that single

assignment may just be the start node assignment of
“Undefined”.)

* More specifically:

—If x := ®(...,X;...) in block n, then the definition
of x; dominates the it predecessor of n

— If x is used in a non-® statement in block n, then

the definition of x dominates
block n

Winter 2013 UW CSE 401 (Michael Ringenburg)

11

0’ Dominance Frontier (1)

 To get a practical algorithm for placing ®-
functions, we need to avoid looking at all
combinations of nodes leading from x to y

» Instead, use the dominator tree in the flow
graph.
— Place merges just beyond the end of the
definitions” dominance.

* The first point where they may receive a value from an
alternate definition.

— This follows directly from the previous properties:
« ®-function means predecessors are dominated by defs
* Non @ usage means dominated by def

— This is referred to as the dominance frontier.

Winter 2013 UW CSE 401 (Michael Ringenburg) 12

’ Dominance Frontier (2) e

* Definitions
— X strictly dominates y if x dominates y and
X=Y
— The dominance frontier of a node x is the set of
all nodes w such that x dominates a predecessor
of w, but x does not strictly dominate w

« Interestingly, this means that x can be in it’s own
dominance frontier! This can happen if you have a back
edge to x (x is the head of a loop).

« Essentially, the dominance frontier is the
bo(rjder between dominated and undominated
nodes

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

[]=x
. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 14

a . = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 15

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 16

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 17

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 18

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 19

a . = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 20

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 21

[]=x
a . = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 22

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 23

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 24

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 25

. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 26

’ Placing @ -Functions

- If a node x contains the definition of variable g,
then every node in the dominance frontier of x
needs a ®-function for a
— Idea: Everything dominated by x will see x’s

definition. Dominance frontier represents first nodes
we could have reached via an alternate path, which
will have an alternate reaching definition (recall that
the entry defines everything).
» Why does this work for loops? Hint: Strict dominance ...
— Since the ®-function itself is a definition, this needs
to be iterated until it reaches a fixed-point

« Theorem: this algorithm places exactly the same
set of ®-functions as the path criterion given
previously.

Winter 2013 UW CSE 401 (Michael Ringenburg) 27

Placing @ -Functions:
Details

« We won’ t give the full constructions here
(see your text). The basic steps are:
1. Compute the dominance frontiers for each node
in the control flow graph

2. Insert just enough ®-functions to satisfy the
criterion. Use a worklist algorithm to avoid
reexamining nodes unnecessarily

3. Walk the dominator tree and rename the
different definitions of variable a to be a,, a,, as,

Winter 2013 UW CSE 401 (Michael Ringenburg) 28

’ SSA Optimizations

« Advantage of SSA: Makes many
optimizations and analyses simpler and
more efficient.

— We'll show a couple examples.

« But first, what do we know? (i.e., what

information is kept in the SSA graph?)

Winter 2013 UW CSE 401 (Michael Ringenburg) 29

9 SSA Data Structures

« Statement: links to containing block, next
and previous statements, variables defined,
variables used.

» Variable: link to its (single) definition
statement and (possibly multiple) use sites

 Block: List of contained statements, ordered
list of predecessors, successor(s)

Winter 2013 UW CSE 401 (Michael Ringenburg) 30

.9 Dead-Code Elimination

« A variable is live if and only if its list of uses is

not empty(!)

— Without SSA, possibly many stores to each variable.
Have to disambiguate which might be used. With
SSA each store defines a new variable, so this
becomes trivial ...

* Algorithm to delete dead code:

while there is some variable v with no uses

if the statement that defines v has no
other side effects, then delete it

— Need to remove this statement from the list of uses
for its operand variables — which may cause those
variables to become dead

Winter 2013 UW CSE 401 (Michael Ringenburg) 31

Sparse Simple Constant
Propagation (SSCP)

« If cis a constant in v := ¢, any use of v can
be replaced by c
— Then update every use of v to use constant ¢

« Ifthec’sinv:= ®(c, C,, ..., ¢,) are all the
same constant ¢ (or “Undefined” via start node, if
you like), we can replace this with v := ¢

 Can also incorporate copy propagation,
constant folding, and others in the same
worklist algorithm

Winter 2013 UW CSE 401 (Michael Ringenburg) 32

Sparse Simple Constant
Propagation

W := list of all statements in SSA program
while W is not empty
remove some statement S from W
if Sisvi=0(c, ¢, ..., €), replace S with v:=c
if Sis vi=c
delete S from the program
for each statement T that uses v
substitute cforvin T
add Tto W

Winter 2013 UW CSE 401 (Michael Ringenburg) 33

Converting Back from
SSA

 Unfortunately, real machines do not
include a ® instruction

« So after analysis, optimization, and
transformation, need to convert back to a
“@-less” form for execution

Winter 2013 UW CSE 401 (Michael Ringenburg) 34

‘9 Translating ®-functions

« The meaning of x := @ (X, Xy, ..., X,,) IS
“set x := x, if arriving on edge 1, set x:=
X, if arriving on edge 2, etc.”

» So, for each i, insert x := x; at the end of
predecessor block i

« Rely on copy propagation and coalescing
in register allocation to eliminate
redundant moves

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

o SSA

« There are many details needed to fully
and efficiently implement SSA, but these
are the main ideas

— Your text has some more details
« SSA is used in most modern optimizing

compilers & has been retrofitted into many
older ones (gcc is a well-known example)

Winter 2013 UW CSE 401 (Michael Ringenburg) 36

’ Course Evaluations

* You all know the drill by now. Doing them
today because rest of this week will be busy.

— Two guest lectures (Wednesday and Friday)

* Any volunteers to collect and send them in?
— Or | can always volunteer someone ©

Winter 2013 UW CSE 401 (Michael Ringenburg) 37

