CSE 401 — Compilers

Lecture 23: Dataflow Analysis/SSA
Michael Ringenburg
Winter 2013
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’ Reminders

* Project Part 4 due on Friday, March 15.

* There will be a short project report due on
Sunday, March 17 — at most one late day may
be used for the report (if you have any left).

— One-two pages
— See posted assignment
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9 Today’s Agenda

* Finish discussing Dataflow Analysis, with more
examples

* Begin discussing Single Static Assignment
(SSA) form.
— An IR where every variable has exactly one static

assignment (may be more dynamically, if
assignment is in a loop).

— Makes many analyses/optimizations more
efficient.
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* Avariable v is live at point p if and only if
there is any path from p to a use of v
along which v is not redefined
— l.e., v might be used before it is redefined
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9 Liveness Analysis Sets

* We will propagate liveness backwards through
the control flow graph.
* For each block b, define the following sets

— use[b] = variables used in b before being defined
* Generates liveness

— def[b] = variables defined in b before being used
* Kills liveness

—in[b] = variables live on entry to b
— out[b] = variables live on exit from b

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

’ Equations for Live
Variables
* Given the preceding definitions and dataflow framework
equations, we have

in[b] = use[b] U (out[b] — def[b])
OUt[b] = UsEsucclb] in[s]

* l.e., live at entry iff this blocks generates liveness (use[b])
or it was live at the exit and this block does not kill liveness
(out[b] — def[b]).

* And live at exit iff live at entry to any successor.

* Algorithm

— Setin[b] = out[b] = &
— Compute use[b] and def[b] for every block (one time)

— Repeatedly update in, out until no change, using worklist style
algorithm we saw last time
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Calculation

6: return c

in[b] = use[b] U (out[b] — def[b])
OUt[b] = UsEsucc[b] in[s]
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’ Equations for Live
Variables v2
* Many problems have more than one formulation.
For example, Live Variables...

* Sets

— USED(b) — variables used in b before being defined in
b (generates)

— NOTDEF(b) — variables not defined in b (doesn’t kill)
— LIVE(b) — variables live on exit from b
* Equation — live at exit if live at entry to any
successor, and live at entry if generated or live at
exit and not killed:
LIVE(b) = Uyequeep) USED(s) U (LIVE(s) N NOTDEF(s))
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9 Example: Reaching
Definitions

* A definition d of some variable v reaches

operation i iff i reads the value of v and
there is a path from d to i that does not
define v (i.e., i might use value defined at d)

* Uses

— Find all of the possible definition points for a
variable in an expression
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’ Equations for Reaching
Definitions

Sets

— DEFOUT(b) — set of definitions in b that reach the end of b (i.e., not
subsequently redefined in b). Generates.

— SURVIVED(b) — set of all definitions not obscured by a definition in
b. Doesn’t kill.

— REACHES(b) — set of definitions that reach b
Propagate forward through CFG

Equation — definition reaches b if any predecessor of b
generates it, or if it reaches any predecessor and that
predecessor does not kill it:

REACHES(b) = Uepreasss) DEFOUT(p) U (REACHES(p) N SURVIVED(p))
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9 Example: Very Busy
Expressions

* An expression e is considered very busy at
some point p if e is evaluated and used along
every path that leaves p, and evaluatinge atp
would produce the same result as evaluating
it at the original locations

* Uses

— Code hoisting — move e to p (reduces code size; no
effect on execution time unless moving out of a
loop)

Winter 2013 UW CSE 401 (Michael Ringenburg) 11

’ Equations for Very Busy
Expressions

* Propagate backwards

* Sets

— USED(b) — expressions used in b before they are killed.
Generates busy-ness.

— KILLED(b) — expressions redefined in b before they are used.
Kills busy-ness.

— VERYBUSY(b) — expressions very busy on exit from b

* Equation — expression very busy at exit of b if it is very
busy at every successor. Very busy at a successor if
successor generates busy-ness or if it is busy at
successor’s exit and successor does not kill busy-ness:

VERYBUSY(b) = Nycqyce(n) USED(s) U (VERYBUSY(s) - KILLED(s))

s&succ
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9 Using Dataflow
Information
» Dataflow analysis provides a nice framework
for doing analysis.

* Optimizations require analysis and
transoformations.

* Next, a few examples of possible
transformations that rely on dataflow analysis
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’ Classic Common-
Subexpression Elimination
* Inastatements:z:=xopy,if xopyisavailable

at s (our previous analysis) then it need not be
recomputed

* Compute reaching expressions i.e., statements n:
v :=x op y such that the path from n to s does not
compute x op y or define x ory

— Where the expression is available from

— As we saw in earlier example, available expressions
may be available from different places in different
paths (e.g., 5*n earlier).
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9 Classic CSE

* If xopyis defined at n and reaches s
— Create new temporary t
— Rewriten:v:=xopyas

n:t:=xopy
n:v:=t
— If multiple reaching definition points, rewrite all of
them
— Modify statement s: z ;= x op y to be
siz:=t

— (Rely on copy propagation to remove extra
assignments if not really needed)
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’ Revisiting Earlier Example

j = 2%a; | AVAIL={}

k = 2*b;
AVAIL = {2*a, 2*b} |[X =a + b;
b=c+d: c = 5*%n; | AVAIL = {2*a, 2*b}
14
m = 5%n;

N

= * *
h = 2*a; AVAIL = { 5*n, 2*a }
i = 5%n;
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9 Revisiting Earlier Example

AVAIL = {2*a, 2*b}

Winter 2013

t1 = 2*a; |AVAIL = {}

=1

k = 2*b;
X=a+b;
b=c+d:; t2 = 5*n; | AVAIL = {2*a, 2*b}
t2 = 5%n; c=t2;
m = t2;

\
h = t1; AVAIL = { 5*%n, 2*a }

i =1t2;
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’ Then Apply Very Busy ...

AVAIL = {2*a, 2*b}

Winter 2013

tl = 2*a;

j=tl; AVAIL = { }

k = 2*b;

t2 = 5*n;
X = a{\
b=c+d; c=12; AVAIL = {2*a, 2*b}
m = t2;

\h=‘ £1:| AVAIL ={5*n, 2*a }

i =12;
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9 Constant Propagation

e Suppose we have
— Statement d: x := ¢, where c is constant
— Statement n that uses x

 If d reaches n and no other definitions of x
reach n, then rewrite n to use c instead of x

— Or (less common), if all reaching definitions set x
to same constant c.
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’ Copy Propagation

* Similar to constant propagation

* Setup:
— Statement d: x:=z
— Statement n uses x

* If d reaches n and no other definition of x reaches
n, and there is no definition of z on any path from
d to n, then rewrite n to use z instead of x

— We saw earlier how this can help remove dead
assignments
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9 Copy Propagation
Tradeoffs
* Downside is that this can increase the lifetime

of variable z and increase need for registers or
memory traffic

* But it can expose other optimizations, e.g.,
a:=y+z
u:=y
c:=u+z // Copy propagation makes thisy + z
— After copy propagation we can recognize the
common subexpression
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’ Dead Code Elimination

* If we have an instruction
s;ta:=bopc
and a is not live after s, then s can be
eliminated

— Provided it has no implicit side effects that are
visible (output, exceptions, etc.)

* If b or c are a function call, they may have unknown
side effects.
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9 Dataflow...

* General framework for discovering facts about
programs
— Although not the only possible story

e Can fit many common compiler analyses into
this framework

* These facts open opportunities for code
improvement
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’ Next Topic: SSA Form

* SSA (Single Static Assignment) is a very common
IR used by optimizing compilers
— Makes many analyses (and thus optimizations) more
efficient.

— Key property: Each variable has exactly one static
definition. May have multiple dynamic definitions,
e.g., aloop.
* Our next topic: An overview of the SSA IR
— Constructing SSA graphs
— SSA-based optimizations
— Converting back from SSA form
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Q Motivation:
Def(ine)-Use Chains
* Common dataflow analysis problem: Find all sites
where a variable is used, or find the possible
definition sites of a variable used in an expression
* Traditional solution: def-use (DU) chains —

additional data structure on top of the IR

— Link each statement defining a variable to all
statements that use it

— Link each use of a variable to its possible definitions
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’ DU-Chain Drawbacks

« Expensive: if a typical variable has N uses
and M definitions, total cost is O(N * M *
numVariables)

— Would be nice if cost were proportional to the
size of the program

« Unrelated uses of the same variable are
mixed together
— Complicates analysis
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SSA:
Static Single Assignment

« IR where each variable has only one
definition in the program text
— This is a single static definition, but it may be

in a loop that is executed dynamically many
times
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’ SSA in Basic Blocks

Idea: For each original variable x, create a new
variable x, at the nt" definition of the original x.
Subsequent uses of x use x,, until the next def.

* Original « SSA
a:i=x+y a;i=X+y
b:=a-1 b,:=a; -1
a:=y+b a,:=y+b,
b:=x*4 b,:=x*4
a:=a+b a;i=a,+b,
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0’ Merge Points

. '(Ep(es issue is how to handle merge points in the

if () if ()

a = x; a, = X;
else > else

a =y; a, = Yi
b = a; b, = 22;
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if (..) if (..)
a = x; a, = x;
else > else
a =y a, =Y
b = a; a; = P(ay, ay);
b, = a;;

« Solution: introduce a ®-function a; := ®P(a;, a,)
» Meaning: a; is assigned either a;or a, depending
on which control path is used to reach the ®-

function
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0’ Another Example

Original SSA
b := M[x] b, := M[x,]
a:=0 a; =

as = GD(al, az)
C;i=az+by
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How Does @ “Know”
What to Pick?

« ®-functions seem a bit “magical” — how
do they know what value to pick??

« They don’ t actually need to, because they
don't exist at run-time ...
— When we're done using the SSA IR, we
translate back out of SSA form, removing all
® -functions.
— For analysis, all we typically need to know is

the connection of uses to definitions — no
need to “execute” anything.
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0’ Example With Loop

Original SSA
* Loop back edges also
a:=0 represent merge points,

a; := ®(ay, a,) and thus require ©
b, := ®(by, b,) functions.
b:=a+1 c, 1= ®(cy, ) * Notes:
ci=c+ b b:=a;+1 * ag, by, ¢y areinitial
a:= b C :-=—Cé ";kbzz values of a, b, c on
ifa< azif'; <2 N block entry
2 * b, isdead —can
delete later
return c
ﬁ
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’Converting To SSA Form/ It

Basic idea
— First, add ®-functions

— Then, rename all definitions and uses of
variables by adding subscripts
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0’ Inserting ®-Functions (Hf

« Could simply add ®-functions for every
variable at every join point

« But
— Wastes way too much space and time
— Not needed
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’ When to Insert a
@ -Function

« Insert a ®-function for variable a at block z
when

— There are blocks x and y, both containing
definitions of a, and x = y

— There are nonempty paths from x to z and from y
toz

— These paths have no common nodes other than z
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0’ Details

« The start node of the control flow graph is
considered to define every variable

« Each ®-function itself defines a variable,
which may create the need for a new ®-
function.

— So we need to keep adding ® -functions until
things converge (no more changes).

« How do we do this efficiently?
— Using a new concept: dominance frontiers
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’ Dominators

« Definition
— A block x dominates a block y iff every path from the
entry of the control-flow graph to y includes x

By definition, x dominates x

« We can associate a Dom(inator) set with each
CFG node
— | Dom(x) | 21

» Properties:
— Transitive: if a dom b and b dom ¢, then a dom ¢
— No cycles, thus can view dominators a tree
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0’ Dominators and SSA

« One property of SSA is that definitions
dominate uses; more specifically:
—If x := ®(...,X;...) in block n, then the
definition of x, dominates the it predecessor
of n

—If X is used in a non-® statement in block n,
then the definition of x dominates
block n
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’ Dominance Frontier (1) (il

 To get a practical algorithm for placing ®-
functions, we need to avoid looking at all
combinations of nodes leading from x to y

 Instead, use the dominator tree in the
flow graph
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0’ Dominance Frontier (2) W

« Definitions
— X strictly dominates y if x dominates y and
X=zY
— The dominance frontier of a node x is the set of
all nodes w such that x dominates a predecessor
of w, but x does not strictly dominate w

« Interestingly, this means that x can be in it’s own
dominance frontier! This can happen if you have a back
edge to x (x is the head of a loop).

« Essentially, the dominance frontier is the
boEIder between dominated and undominated
nodes
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’ Example

. = DominanceFrontier(x)
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a . = DominanceFrontier(x)
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. = DominanceFrontier(x)
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. = DominanceFrontier(x)
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. = DominanceFrontier(x)
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a . = DominanceFrontier(x)
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a . = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 50




[ ]=x
. = DominanceFrontier(x)

Winter 2013 UW CSE 401 (Michael Ringenburg) . = StrictDom(x) 51

Sl

. = DominanceFrontier(x)
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. = DominanceFrontier(x)
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. = DominanceFrontier(x)
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. = DominanceFrontier(x)
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. = DominanceFrontier(x)
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.9 Placing @ -Functions

- If a node x contains the definition of variable g,
then every node in the dominance frontier of x
needs a @ -function for a
— Idea: Everything dominated by x will see x's

definition. Dominance frontier represents first nodes
we could have reached via an alternate path, which
will have an alternate reaching definition (recall that
we say the entry defines everything).
« Why does this work for loops? Hint: Strict dominance ...
— Since the ®-function itself is a definition, this needs
to be iterated until it reaches a fixed-point

» Theorem: this algorithm places exactly the same
set of ®-functions as the path criterion given
previously.
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Placing & -Functions:
Details

« We won’ t give the full constructions here
(see your text). The basic steps are:
1. Compute the dominance frontiers for each node
in the flowgraph

2. Insert just enough ®-functions to satisfy the
criterion. Use a worklist algorithm to avoid
reexamining nodes unnecessarily

3. Walk the dominator tree and rename the
different definitions of variable a to be a;, a,, as,
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03 SSA Optimizations

« Advantage of SSA: Makes many
optimizations and analyses simpler and
more efficient.

— We'll show a couple examples.

« But first, what do we know? (i.e., what

information is kept in the SSA graph?)
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a SSA Data Structures

« Statement: links to containing block, next
and previous statements, variables defined,
variables used.

« Variable: link to its (single) definition
statement and (possibly multiple) use sites

 Block: List of contained statements, ordered
list of predecessors, successor(s)
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03 Dead-Code Elimination ‘1

» A variable is live iff its list of uses is not
empty(!)

« Algorithm to delete dead code:
while there is some variable v with no uses

if the statement that defines v has no
other side effects, then delete it
— Need to remove this statement from the list of

uses for its operand variables — which may cause
those variables to become dead
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Sparse Simple Constant
Propagation

« If cisa constant in v := ¢, any use of v can
be replaced by ¢
— Then update every use of v to use constant ¢

« Ifthec’sinv:= ®(c, Cy, ..., C,) are all the
same constant ¢, we can replace this with
Vi=C

 Can also incorporate copy propagation,
constant folding, and others in the same
worklist algorithm
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9 Simple Constant
Propagation

W := list of all statements in SSA program
while W is not empty
remove some statement S from W
if Sisvi=9®(c, ¢, ..., ¢), replace S with vi=c
if Sis vi=c
delete S from the program
for each statement T that uses v
substitute cforvinT
add Tto W
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Converting Back from
SSA

« Unfortunately, real machines do not
include a @ instruction

 So after analysis, optimization, and
transformation, need to convert back to a
“®-less” form for execution
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9 Translating ®-functions!!

« The meaning of x := ®(Xy, X5, ..., X,) iS
“set x := x, if arriving on edge 1, set x:=
X, if arriving on edge 2, etc.”

« So, for each i, insert x := x; at the end of
predecessor block i

 Rely on copy propagation and coalescing
in register allocation to eliminate
redundant moves
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o2 SSA

« There are many details needed to fully
and efficiently implement SSA, but these
are the main ideas

« SSA is used in most modern optimizing
compilers & has been retrofitted into many
older ones (gcc is a well-known example)
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