CSE 401 – Compilers

Lecture 23: Dataflow Analysis/SSA
Michael Ringenburg
Winter 2013

Reminders

• Project Part 4 due on Friday, March 15.
• There will be a short project report due on Sunday, March 17 – at most one late day may be used for the report (if you have any left).
 – One-two pages
 – See posted assignment
Today’s Agenda

• Finish discussing Dataflow Analysis, with more examples
• Begin discussing Single Static Assignment (SSA) form.
 – An IR where every variable has exactly one static assignment (may be more dynamically, if assignment is in a loop).
 – Makes many analyses/optimizations more efficient.

Example From End of Last Class: Live Variable Analysis

• A variable v is live at point p if and only if there is any path from p to a use of v along which v is not redefined
 – I.e., v might be used before it is redefined
Liveness Analysis Sets

- We will propagate liveness *backwards* through the control flow graph.
- For each block b, define the following sets
 - use[b] = variables used in b before being defined
 - *Generates* liveness
 - def[b] = variables defined in b before being used
 - *Kills* liveness
 - in[b] = variables live on entry to b
 - out[b] = variables live on exit from b

Equations for Live Variables

- Given the preceding definitions and dataflow framework equations, we have
 - in[b] = use[b] \cup (out[b] \setminus def[b])
 - out[b] = \bigcup_{s \in \text{succ}(b)} \text{in}[s]
- I.e., live at entry iff this blocks generates liveness (use[b]) or it was live at the exit and this block does not kill liveness (out[b] \setminus def[b]).
- And live at exit iff live at entry to any successor.
- Algorithm
 - Set in[b] = out[b] = \emptyset
 - Compute use[b] and def[b] for every block (one time)
 - Repeatedly update in, out until no change, using worklist style algorithm we saw last time
Calculation

```
1: a:= 0
2: b:=a+1
3: c:=c+b
4: a:=b+2
5: a < N
6: return c
```

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] – \text{def}[b])\]
\[\text{out}[b] = \bigcup_{s \in \text{succ}(b)} \text{in}[s]\]

Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
 - \(\text{USED}(b)\) – variables used in \(b\) before being defined in \(b\) (generates)
 - \(\text{NOTDEF}(b)\) – variables not defined in \(b\) (doesn’t kill)
 - \(\text{LIVE}(b)\) – variables live on \textit{exit} from \(b\)
- Equation – live at exit if live at entry to any successor, and live at entry if generated or live at exit and not killed:
 \[\text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s))\]
Example: Reaching Definitions

• A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v (i.e., i might use value defined at d)

• Uses
 – Find all of the possible definition points for a variable in an expression

Equations for Reaching Definitions

• Sets
 – $\text{DEFOUT}(b)$ – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b). **Generates.**
 – $\text{SURVIVED}(b)$ – set of all definitions not obscured by a definition in b. **Doesn't kill.**
 – $\text{REACHES}(b)$ – set of definitions that reach b

• Propagate forward through CFG

• Equation – definition reaches b if any predecessor of b generates it, or if it reaches any predecessor and that predecessor does not kill it:

$$\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))$$
Example: Very Busy Expressions

• An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations

• Uses
 – Code hoisting – move e to p (reduces code size; no effect on execution time unless moving out of a loop)

Equations for Very Busy Expressions

• Propagate backwards

• Sets
 – $\text{USED}(b)$ – expressions used in b before they are killed. Generates busy-ness.
 – $\text{KILLED}(b)$ – expressions redefined in b before they are used. Kills busy-ness.
 – $\text{VERYBUSY}(b)$ – expressions very busy on exit from b

• Equation – expression very busy at exit of b if it is very busy at every successor. Very busy at a successor if successor generates busy-ness or if it is busy at successor’s exit and successor does not kill busy-ness:

$$\text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s))$$
Using Dataflow Information

- Dataflow analysis provides a nice framework for doing analysis.
- Optimizations require analysis and transformations.
- Next, a few examples of possible transformations that rely on dataflow analysis

Classic Common-Subexpression Elimination

- In a statement s: $z := x \text{ op } y$, if $x \text{ op } y$ is available at s (our previous analysis) then it need not be recomputed
- Compute reaching expressions i.e., statements n: $v := x \text{ op } y$ such that the path from n to s does not compute $x \text{ op } y$ or define x or y
 - Where the expression is available from
 - As we saw in earlier example, available expressions may be available from different places in different paths (e.g., $5*n$ earlier).
Classic CSE

- If \(x \ op \ y \) is defined at \(n \) and reaches \(s \)
 - Create new temporary \(t \)
 - Rewrite \(n: v := x \ op \ y \) as
 \[
 n: t := x \ op \ y \\
 n': v := t
 \]
 - If multiple reaching definition points, rewrite all of them
 - Modify statement \(s: z := x \ op \ y \) to be
 \(s: z := t \)
 - (Rely on copy propagation to remove extra assignments if not really needed)

Revisiting Earlier Example

\[
\begin{align*}
 j &= 2*a; \\
 k &= 2*b; \\
 x &= a + b; \\
 b &= c + d; \\
 m &= 5*n; \\
 c &= 5*n; \\
 h &= 2*a; \\
 i &= 5*n; \\
 \text{AVAIL} &= \{ 5*n, 2*a \}
\end{align*}
\]
Revisiting Earlier Example

\[t_1 = 2*a; \]
\[j = t_1; \]
\[k = 2*b; \]

\[\text{AVAIL} = \{ \} \]

\[\text{AVAIL} = \{2*a, 2*b\} \]
\[x = a + b; \]
\[b = c + d; \]
\[t_2 = 5*n; \]
\[m = t_2; \]

\[\text{AVAIL} = \{2*a, 2*b\} \]
\[t_2 = 5*n; \]
\[c = t_2; \]

\[\text{AVAIL} = \{5*n, 2*a\} \]

Then Apply Very Busy ...

\[t_1 = 2*a; \]
\[j = t_1; \]
\[k = 2*b; \]
\[t_2 = 5*n; \]

\[\text{AVAIL} = \{ \} \]

\[\text{AVAIL} = \{2*a, 2*b\} \]
\[x = a + b; \]
\[b = c + d; \]
\[m = t_2; \]

\[\text{AVAIL} = \{2*a, 2*b\} \]
\[c = t_2; \]

\[\text{AVAIL} = \{5*n, 2*a\} \]

\[\text{AVAIL} = \{ \} \]

\[h = t_1; \]
\[i = t_2; \]
Constant Propagation

• Suppose we have
 – Statement d: x := c, where c is constant
 – Statement n that uses x
• If d reaches n and no other definitions of x reach n, then rewrite n to use c instead of x
 – Or (less common), if all reaching definitions set x to same constant c.

Copy Propagation

• Similar to constant propagation
• Setup:
 – Statement d: x := z
 – Statement n uses x
• If d reaches n and no other definition of x reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of x
 – We saw earlier how this can help remove dead assignments
Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

 \[
 \begin{align*}
 a & := y + z \\
 u & := y \\
 c & := u + z \quad \text{,// Copy propagation makes this } y + z
 \end{align*}
 \]

 – After copy propagation we can recognize the common subexpression

Dead Code Elimination

- If we have an instruction

 \[
 s: a := b \text{ op } c
 \]

 and a is not live after s, then s can be eliminated

 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)

 • If b or c are a function call, they may have unknown side effects.
Dataflow...

- General framework for discovering facts about programs
 - Although not the only possible story
- Can fit many common compiler analyses into this framework
- These facts open opportunities for code improvement

Next Topic: SSA Form

- SSA (Single Static Assignment) is a very common IR used by optimizing compilers
 - Makes many analyses (and thus optimizations) more efficient.
 - Key property: Each variable has exactly one static definition. May have multiple dynamic definitions, e.g., a loop.
- Our next topic: An overview of the SSA IR
 - Constructing SSA graphs
 - SSA-based optimizations
 - Converting back from SSA form
Motivation:
Def(ine)-Use Chains

• Common dataflow analysis problem: Find all sites where a variable is used, or find the possible definition sites of a variable used in an expression

• Traditional solution: def-use (DU) chains – additional data structure on top of the IR
 – Link each statement defining a variable to all statements that use it
 – Link each use of a variable to its possible definitions

DU-Chain Drawbacks

• Expensive: if a typical variable has N uses and M definitions, total cost is $O(N \times M \times numVariables)$
 – Would be nice if cost were proportional to the size of the program

• Unrelated uses of the same variable are mixed together
 – Complicates analysis
SSA: Static Single Assignment

- IR where each variable has only one definition in the program text
 - This is a single static definition, but it may be in a loop that is executed dynamically many times

SSA in Basic Blocks

Idea: For each original variable x, create a new variable x_n at the n^{th} definition of the original x. Subsequent uses of x use x_{n,r} until the next def.

- Original
 a := x + y
 b := a - 1
 a := y + b
 b := x * 4
 a := a + b

- SSA
 a_1 := x + y
 b_1 := a_1 - 1
 a_2 := y + b_1
 b_2 := x * 4
 a_3 := a_2 + b_2
Merge Points

- The issue is how to handle merge points in the CFG.

```
if (...) 
  a = x;
else 
  a = y;

b = a;
```

```
if (...) 
  a₁ = x;
else 
  a₂ = y;

b₁ = ??;
```

- Solution: introduce a \(\Phi \)-function \(a₃ := \Phi(a₁, a₂) \)
- Meaning: \(a₃ \) is assigned either \(a₁ \) or \(a₂ \) depending on which control path is used to reach the \(\Phi \)-function
Another Example

Original

\[b := M[x] \]
\[a := 0 \]
\[\text{if } b < 4 \]
\[a := b \]
\[c := a + b \]

SSA

\[b_1 := M[x_0] \]
\[a_1 := 0 \]
\[\text{if } b_1 < 4 \]
\[a_2 := b_1 \]
\[a_3 := \Phi(a_1, a_2) \]
\[c_1 := a_3 + b_1 \]

How Does Φ “Know” What to Pick?

- Φ-functions seem a bit “magical” – how do they know what value to pick??
- They don’t actually need to, because they don’t exist at run-time ...
 - When we’re done using the SSA IR, we translate back out of SSA form, removing all Φ-functions.
 - For analysis, all we typically need to know is the connection of uses to definitions – no need to “execute” anything.
Example With Loop

Original

\[
\begin{align*}
a & := 0 \\
b & := a + 1 \\
c & := c + b \\
a & := b \times 2 \\
\text{if } a < N & \\
\text{return } c
\end{align*}
\]

SSA

\[
\begin{align*}
a_1 & := 0 \\
a_3 & := \Phi(a_1, a_2) \\
b_1 & := \Phi(b_0, b_2) \\
c_2 & := \Phi(c_0, c_1) \\
b_2 & := a_1 + 1 \\
c_1 & := c_2 + b_2 \\
a_2 & := b_2 \times 2 \\
\text{if } a_2 < N & \\
\text{return } c_1
\end{align*}
\]

- Loop back edges also represent merge points, and thus require \(\Phi \) functions.
- Notes:
 - \(a_0, b_0, c_0 \) are initial values of \(a, b, c \) on block entry
 - \(b_1 \) is dead – can delete later

Converting To SSA Form

- Basic idea
 - First, add \(\Phi \)-functions
 - Then, rename all definitions and uses of variables by adding subscripts
Inserting Φ-Functions

- Could simply add Φ-functions for every variable at every join point
- But
 - Wastes way too much space and time
 - Not needed

When to Insert a Φ-Function

- Insert a Φ-function for variable a at block z when
 - There are blocks x and y, both containing definitions of a, and $x \neq y$
 - There are nonempty paths from x to z and from y to z
 - These paths have no common nodes other than z
Details

• The start node of the control flow graph is considered to define every variable
• Each Φ-function itself defines a variable, which may create the need for a new Φ-function.
 – So we need to keep adding Φ-functions until things converge (no more changes).
• How do we do this efficiently?
 – Using a new concept: dominance frontiers

Dominators

• Definition
 – A block x dominates a block y iff every path from the entry of the control-flow graph to y includes x
• By definition, x dominates x
• We can associate a Dom(inator) set with each CFG node
 – $| \text{Dom}(x) | \geq 1$
• Properties:
 – Transitive: if $a \text{ dom } b$ and $b \text{ dom } c$, then $a \text{ dom } c$
 – No cycles, thus can view dominators a tree
Dominators and SSA

• One property of SSA is that definitions dominate uses; more specifically:
 – If \(x := \Phi(...,x_i,...) \) in block \(n \), then the definition of \(x_i \) dominates the \(i^{th} \) predecessor of \(n \)
 – If \(x \) is used in a non-\(\Phi \) statement in block \(n \), then the definition of \(x \) dominates block \(n \)

Dominance Frontier (1)

• To get a practical algorithm for placing \(\Phi \)-functions, we need to avoid looking at all combinations of nodes leading from \(x \) to \(y \)
• Instead, use the dominator tree in the flow graph
Dominance Frontier (2)

- Definitions
 - \(x \) strictly dominates \(y \) if \(x \) dominates \(y \) and \(x \neq y \)
 - The \textit{dominance frontier} of a node \(x \) is the set of all nodes \(w \) such that \(x \) dominates a predecessor of \(w \), but \(x \) does not strictly dominate \(w \)
 - Interestingly, this means that \(x \) can be in \textit{it’s own dominance frontier}! This can happen if you have a back edge to \(x \) (\(x \) is the head of a loop).
- Essentially, the dominance frontier is the border between dominated and undominated nodes

Example

\begin{itemize}
\item \(x \)
\item \(\text{DominanceFrontier}(x) \)
\item \(\text{StrictDom}(x) \)
\end{itemize}
Example

Winter 2013 UW CSE 401 (Michael Ringenburg)
Example

Example
Example

Winter 2013
UW CSE 401 (Michael Ringenburg)
Example

Winter 2013
UW CSE 401 (Michael Ringenburg)

Example

Winter 2013
UW CSE 401 (Michael Ringenburg)
Example
Example

Winter 2013 UW CSE 401 (Michael Ringenburg) 55

Example

Winter 2013 UW CSE 401 (Michael Ringenburg) 56
Placing Φ-Functions

- If a node x contains the definition of variable a, then every node in the dominance frontier of x needs a Φ-function for a
 - Idea: Everything dominated by x will see x’s definition. Dominance frontier represents first nodes we could have reached via an alternate path, which will have an alternate reaching definition (recall that we say the entry defines everything).
 - Why does this work for loops? Hint: Strict dominance ...
 - Since the Φ-function itself is a definition, this needs to be iterated until it reaches a fixed-point
- Theorem: this algorithm places exactly the same set of Φ-functions as the path criterion given previously.

Placing Φ-Functions: Details

- We won’t give the full constructions here (see your text). The basic steps are:
 1. Compute the dominance frontiers for each node in the flowgraph
 2. Insert just enough Φ-functions to satisfy the criterion. Use a worklist algorithm to avoid reexamining nodes unnecessarily
 3. Walk the dominator tree and rename the different definitions of variable a to be a_1, a_2, a_3, ...

Winter 2013
UW CSE 401 (Michael Ringenburg)
SSA Optimizations

- Advantage of SSA: Makes many optimizations and analyses simpler and more efficient.
 - We’ll show a couple examples.
- But first, what do we know? (i.e., what information is kept in the SSA graph?)

SSA Data Structures

- Statement: links to containing block, next and previous statements, variables defined, variables used.
- Variable: link to its (single) definition statement and (possibly multiple) use sites
- Block: List of contained statements, ordered list of predecessors, successor(s)
Dead-Code Elimination

• A variable is live iff its list of uses is not empty(!)
• Algorithm to delete dead code:
 while there is some variable v with no uses
 if the statement that defines v has no other side effects, then delete it
 – Need to remove this statement from the list of uses for its operand variables – which may cause those variables to become dead

Sparse Simple Constant Propagation

• If c is a constant in v := c, any use of v can be replaced by c
 – Then update every use of v to use constant c
• If the c_i’s in v := \Phi(c_1, c_2, ..., c_n) are all the same constant c, we can replace this with v := c
• Can also incorporate copy propagation, constant folding, and others in the same worklist algorithm
Simple Constant Propagation

W := list of all statements in SSA program
while W is not empty
 remove some statement S from W
 if S is v:=Φ(c, c, ..., c), replace S with v:=c
 if S is v:=c
 delete S from the program
 for each statement T that uses v
 substitute c for v in T
 add T to W

Converting Back from SSA

- Unfortunately, real machines do not include a Φ instruction
- So after analysis, optimization, and transformation, need to convert back to a “Φ-less” form for execution
Translating Φ-functions

- The meaning of $x := \Phi(x_1, x_2, \ldots, x_n)$ is “set $x := x_1$ if arriving on edge 1, set $x := x_2$ if arriving on edge 2, etc.”
- So, for each i, insert $x := x_i$ at the end of predecessor block i
- Rely on copy propagation and coalescing in register allocation to eliminate redundant moves

SSA

- There are many details needed to fully and efficiently implement SSA, but these are the main ideas
- SSA is used in most modern optimizing compilers & has been retrofitted into many older ones (gcc is a well-known example)