Reminders

• Project Part 4 due on Friday, March 15.
• There will be a short project report due on Sunday, March 17 – at most one late day may be used for the report (if you have any left).
 – One-two pages
 – Describe what you did, what works and doesn’t work, how you tested, what you would have done the same/different, etc...
 – More details on the assignment page (out soon).
 – Technical writing is an important skill for engineers – don’t blow this off. “Concise but precise, and clear enough that even a manager can understand it ...”
• Laure out of town – no office hours today.
Today’s Agenda

• Finish our optimization overview from Friday.
• Begin discussing Dataflow Analysis, with specific examples of how it is used (e.g., Common Subexpression Elimination a.k.a. CSE).
 – (No, this is not the UW Department of Common Subexpression Elimination...)

Review: Intraprocedural Constant Propagation & Folding

• Create tables mapping each variable in scope to one of:
 – A particular constant
 – NonConstant
 – Undefined
• Propagate current table along control flow edges in the CFG
• Transformation at each instruction in a basic block (straightline code):
 – If instruction is an assignment of a constant to a variable, set variable as constant in table
 – If we reference a variable that the table maps to a constant, then replace it with the constant (constant propagation)
 – If an expression involves only constants, and has no side-effects, then perform operation at compile-time and replace with constant result (constant folding)
Merging data flow analysis info

- To propagate between blocks, we must account for merges (multiple incoming control flow edges).
- Constraint: merge results must be sound/conservative
 - If something is believed true after the merge, then it must be true no matter which path we took into the merge
 - I.e., only things true for all predecessors are true after merge
- To merge two maps of constant information, build map by merging corresponding variable information (merge x’s, merge y’s, etc.)
- To merge information about a variable from two paths:
 - If Undefined in one path, keep the status from the other (uninitialized variables are allowed to have any value)
 - If both paths have the same constant, keep that constant
 - Otherwise, degenerate to NonConstant

Example Merges

```c
// Block A
int x;
x = 5;
if (foo) {
  // Block B
  z++;
} else {
  // Block C
  z--;
}
// Block D
```

A {x:5}

B {x:5} C {x:5}

D {x:5}
Example Merges

// Block A
int x;
if (foo) {
 // Block B
 z++;
 x = 5;
} else {
 // Block C
 z--;
 x = 5;
}
// Block D
...

// Block A
int x;
if (foo) {
 // Block B
 z++;
 x = 5;
} else {
 // Block C
 z--;
 x = 4;
}
// Block D
...
Example Merges

A {x:Undefined}
B [x:Undefined]
C {x:4}
D {x:4}

// Block A
int x;
if (foo) {
 // Block B
 z++;
} else {
 // Block C
 z--;
 x = 4;
}
// Block D

How to analyze loops

i = 0;
x = 10;
y = 20;
while (...) {
 // what’s true here?
 ...
 i = i + 1;
y = 30;
}
// what’s true here?
... x ... i ... y ...

• What do we do about backwards edges (aka, loops)?
• Safe but imprecise: forget everything when we enter or exit a loop
• Precise but unsafe: keep everything when we enter or exit a loop
• Can we do better?
Optimistic Iterative Analysis

- Assuming information at loop head is same as information at loop entry
- Then analyze loop body (using this head assumption), and compute information known at back edge
- Merge information at loop back edge with current loop head information
- Test if merged information is same as original assumption
 - If so, then we’re done
 - If not, then replace previous assumption with merged information,
 - and repeat analysis of loop body
Example

i = 0;
x = 10;
y = 20;
while (...) {
 // what’s true here?
 ...
 i = i + 1;
y = 30;
} // what’s true here?
... x ... i ... y ...

Example

i = 0; x = 10; y = 20
while (...) {
 // what’s true here?
 ...
 i = i + 1;
y = 30;
} // what’s true here?
... x ... i ... y ...
Example

i = 0;
x = 10;
y = 20;
while (...) {
 // what’s true here?
 ...
 i = i + 1;
y = 30;
} // what’s true here?
... x ... i ... y ...

Winter 2013 UW CSE 401 (Michael Ringenburg)
Example

```
i = 0;
x = 10;
y = 20;
while (...) {
    // what’s true here?
    ...
    i = i + 1;
    y = 30;
} // what’s true here?
... x ... i ... y ...
```

Example

```
i = 0;
x = 10;
y = 20;
while (...) {
    // what’s true here?
    ...
    i = i + 1;
    y = 30;
} // what’s true here?
... x ... i ... y ...
```
Example

```c
i = 0;
x = 10;
y = 20;
while (...) {
    // what’s true here?
    ...
    i = i + 1;
y = 30; }
// what’s true here?
... x ... i ... y ...
```

```
i = NC, x = 10, y = NC
i = NC, x = 10, y = 30
```

```
i = NC, x = 10, y = NC
```

```
i = NC, x = 10, y = NC
```
Why does this work?

- Why are the results always conservative?
- Because if the algorithm stops, then
 - the loop head info is at least as conservative as both the loop entry info and the loop back edge info
 - the analysis within the loop body is conservative, given the assumption that the loop head info is conservative

More analyses

- Alias analysis
 - Detect when different references may or must refer to the same memory locations
- Escape analysis
 - Pointers that are live on exit from procedures
 - Pointed to data may “escape” to other procedures or threads
- Dependence analysis
 - Determining which references depend on other references
 - May analyze array subscripts that depend on loop induction variables, to determine which loop iterations depend on each other.
 - Important for loop parallelization/vectorization
Optimization Summary

- Optimizations organized as collections of passes, each rewriting IL in place into (hopefully) better version
- Each pass does analysis to determine what is possible, followed by (or concurrent with) transformations that (hopefully) improve the program
 - Sometimes have “analysis-only” passes – produce info used by later passes

Next topic: Dataflow Analysis

- A framework and algorithm for many common compiler analyses
- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
- We’ll be discussing some of the same optimizations we saw in the optimization overview, but with more formalism and details.
Motivating Example: Common Subexpression Elimination (CSE)

• Goal: Find common subexpressions, replace with temporaries
• Idea: calculate available expressions at beginning of each basic block
• Avoid re-evaluation of an available expression – copy a temp instead
 – Simple inside a single block; more complex dataflow analysis used across blocks

“Available” and Other Terms

• An expression e is defined at point p in the CFG (control flow graph) if its value is computed at p
 – Sometimes called definition site
• An expression e is killed at point p if one of its operands (components) is redefined at p
 – Sometimes called kill site
• An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

- To compute available expressions, for each block b, define
 - $\text{AVAIL}(b)$ – the set of expressions available on entry to b
 - $\text{NKILL}(b)$ – the set of expressions not killed in b
 - $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
\]

- $\text{preds}(b)$ is the set of b’s predecessors in the CFG
- In “english”, the expressions available on entry to b are the expressions that were available at the end of every preceeding basic block x. (This is the $\bigcap_{x \in \text{preds}(b)}$)
- The expressions available at the end of block x are exactly those that were defined in x (and not killed), and those that were available at the beginning of x and not killed in x.

- Applying to every block gives a system of simultaneous equations – a dataflow problem
Computing Available Expressions

- Big Picture
 - Build control-flow graph
 - Calculate initial local data – DEF(b) and NKILL(b)
 - This only needs to be done once
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm

Computing DEF and NKILL (1)

- For each block b with operations $o_1, o_2, ..., o_k$

 $KILLED = \emptyset$ // Killed variables (not expressions)
 $DEF(b) = \emptyset$
 for $i = k$ to 1 // Note we are working backwards - important
 assume o_i is “$x = y + z$”
 if ($y \notin KILLED$ and $z \notin KILLED$) // Expression in DEF only if
 add “$y + z$” to $DEF(b)$ // they aren’t later killed
 add x to $KILLED$

...
Example: Computing DEF and KILL

\[x = a + b; \quad \text{DEF} = \{ \} \]
\[b = c + d; \quad \text{KILL} = \{ \} \]
\[m = 5*n; \]

Example: Computing DEF and KILL

\[x = a + b; \quad \text{DEF} = \{ 5*n \} \]
\[b = c + d; \quad \text{KILL} = \{ m \} \]
\[m = 5*n; \]
Example: Computing DEF and KILL

\[
x = a + b; \\
b = c + d; \\
m = 5*n;
\]

DEF = \{ 5*n, \(c+d \) \}

KILL = \{ m, b \}

Winter 2013
UW CSE 401 (Michael Ringenburg)
Computing DEF and NKILL (2)

- After computing DEF and KILLED for a block b,

```
// NKILL is expressions not killed.
NKILL(b) = {all expressions} // Start with all
for each expression e // Remove any killed
  for each variable v ∈ e
    if v ∈ KILLED then
      NKILL(b) = NKILL(b) - e
```

Example: Computing DEF and NKILL

```
\[
x = a + b;
b = c + d;
m = 5*n;
\]
```

DEF = \{ 5*n, c+d \}
KILL = \{ m, b, x \}
NKILL = all expressions that don’t use m, b, or x
Computing Available Expressions

- Once DEF(b) and NKILL(b) are computed for all blocks b, compute AVAIL for all blocks by repeatedly applying the previous formula in a fixed-point algorithm:

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
\]

Example: Computing DEF and NKILL

\[
\begin{align*}
\text{DEF} &= \{ 5*n, c+d \} \\
\text{NKILL} &= \text{exprs w/o } m, b, \text{ or } x
\end{align*}
\]

\[
\begin{align*}
\text{DEF} &= \{ 2*a, 2*b \} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
\text{DEF} &= \{ 5*n \} \\
\text{NKILL} &= \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
\text{DEF} &= \{ 2*a \} \\
\text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]
Example: Computing DEF and NKILL

$$\text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))$$

\[
\begin{align*}
\text{DEF} &= \{ 5*n, c+d \} \\
\text{NKILL} &= \text{exprs w/o m, b, or x}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2*a, 2*b \} \\
\text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
\text{DEF} &= \{ 5*n \} \\
\text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
\text{DEF} &= \{ 2*a \} \\
\text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]
Example: Computing DEF and NKILL

\[\text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[j = 2a \]
\[k = 2b \]
\[x = a + b; \]
\[b = c + d; \]
\[m = 5n; \]
\[c = 5n \]
\[h = 2a \]

AVAIL = \{2*a, 2*b\}
DEF = \{5*n, c+d\}
NKILL = exprs w/o m, b, or x

AVAIL = \{5*n\}
DEF = \{2*a\}
NKILL = exprs w/o c

AVAIL = \{5*n\}
DEF = \{2*a\}
NKILL = exprs w/o h

= in Worklist

= Processing
Example: Computing DEF and NKILL

AVAIL(b) = ∩_{x∈pred(b)} (DEF(x) ∪ (AVAIL(x) ∩ NKILL(x)))

j= 2*a
k = 2*b

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = {2*a, 2*b}
DEF = { 5*n, c+d }
NKILL = exprs w/o m, b, or x

x = a + b;
b = c + d;
m = 5*n;

c = 5*n

AVAIL = {2*a, 2*b}
DEF = { 5*n }
NKILL = exprs w/o c

j= 2*a
k = 2*b

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

h = 2*a

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

h = 2*a

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

h = 2*a

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

h = 2*a

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

h = 2*a

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

h = 2*a
Dataflow analysis

• Available expressions are an example of a dataflow analysis problem
• Many other compiler analyses can be expressed in a similar framework
• Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code

Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block b
 – $IN(b)$ – facts true on entry to b
 – $OUT(b)$ – facts true on exit from b
 – $GEN(b)$ – facts created and not killed in b
 – $KILL(b)$ – facts killed in b
• These are related by the equation
 \[OUT(b) = GEN(b) \cup (IN(b) - KILL(b)) \]
 – (Subtracting $KILL(b)$ is equivalent to intersecting $NKILL(b)$)
 – Solve this iteratively for all blocks
 – Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

- A variable v is *live* at point p if and only if there is any path from p to a use of v along which v is not redefined (i.e., v might be used before it is redefined)
- Some uses:
 - Register allocation – only live variables need a register
 - Eliminating useless stores – if variable is not live at store, the stored value will never be used
 - Detecting uses of uninitialized variables – if live at declaration (before initialization), may be used uninitialized.
 - Improve SSA construction – only create phi functions (variable merges) for live variables - coming later ...

Liveness Analysis Sets

- For each block b, define
 - $\text{use}[b] = \text{variable used in } b \text{ before any } \text{def}$
 - $\text{def}[b] = \text{variable defined in } b \text{ before any use}$
 - $\text{in}[b] = \text{variables live on entry to } b$
 - $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

- Given the preceding definitions, we have
 \[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
 \[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

- Algorithm
 - Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 - Update \(\text{in}, \text{out} \) until no change

Example

- Code

 \[
 \begin{align*}
 a &:= 0 \\
 L: & \quad b := a + 1 \\
 & \quad c := c + b \\
 & \quad a := b \times 2 \\
 & \quad \text{if } a < N \text{ goto } L \\
 & \quad \text{return } c
 \end{align*}
 \]

 1: \(a := 0 \)
 2: \(b := a + 1 \)
 3: \(c := c + b \)
 4: \(a := b \times 2 \)
 5: \(a < N \)
 6: \text{return } c
Calculation

1: a := 0
2: b := a + 1
3: c := c + b
4: a := b + 2
5: a < N
6: return c

\[
\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] = \bigcup_{s \in \text{succ}(b)} \text{in}[s]
\]

Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
 - USED(b) – variables used in b before being defined in b
 - NOTDEF(b) – variables not defined in b
 - LIVE(b) – variables live on exit from b
- Equation
 \[
 \text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s))
 \]
Example: Reaching Definitions

• A definition \(d \) of some variable \(v \) reaches operation \(i \) iff \(i \) reads the value of \(v \) and there is a path from \(d \) to \(i \) that does not define \(v \) (i.e., \(i \) might use value defined at \(d \))

• Uses
 – Find all of the possible definition points for a variable in an expression

Equations for Reaching Definitions

• Sets
 – \(\text{DEFOUT}(b) \) – set of definitions in \(b \) that reach the end of \(b \) (i.e., not subsequently redefined in \(b \))
 – \(\text{SURVIVED}(b) \) – set of all definitions not obscured by a definition in \(b \)
 – \(\text{REACHES}(b) \) – set of definitions that reach \(b \)

• Equation
 \[
 \text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))
 \]
Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

- Uses
 - Code hoisting – move e to p (reduces code size; no effect on execution time)

Equations for Very Busy Expressions

- Sets
 - USED(b) – expressions used in b before they are killed
 - KILLED(b) – expressions redefined in b before they are used
 - VERYBUSY(b) – expressions very busy on exit from b

- Equation
 $$\text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s))$$
Using Dataflow Information

- A few examples of possible transformations...

Classic Common-Subexpression Elimination

- In a statement s: $t := x \text{ op } y$, if $x \text{ op } y$ is available at s then it need not be recomputed
- Analysis: compute reaching expressions i.e., statements n: $v := x \text{ op } y$ such that the path from n to s does not compute $x \text{ op } y$ or define x or y
 - As we saw in earlier example, available expressions may be available from different places in different paths (e.g., $5*n$ earlier).
Classic CSE

- If \(x \text{ op } y \) is defined at \(n \) and reaches \(s \)
 - Create new temporary \(w \)
 - Rewrite \(n \) as

 \[
 n: w := x \text{ op } y \\
 n': v := w
 \]
 - If multiple reaching definition points, rewrite all of them
 - Modify statement \(s \) to be

 \[
 s: t := w
 \]
 - (Rely on copy propagation to remove extra assignments if not really needed)

Constant Propagation

- Suppose we have
 - Statement \(d: t := c \), where \(c \) is constant
 - Statement \(n \) that uses \(t \)
- If \(d \) reaches \(n \) and no other definitions of \(t \) reach \(n \), then rewrite \(n \) to use \(c \) instead of \(t \)
 - Or (less common), if all reaching definitions set \(t \) to same constant \(c \).
Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement d: t := z
 - Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 - We saw earlier how this can help remove dead assignments

Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

 a := y + z
 u := y
 c := u + z // Copy propagation makes this y + z

- After copy propagation we can recognize the common subexpression
Dead Code Elimination

• If we have an instruction

 \[s: a := b \text{ op } c \]

 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated

 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)

 – E.g., if \(b \) or \(c \) are a function call, they may have unknown side effects.

Dataflow...

• General framework for discovering facts about programs

 – Although not the only possible story

• And then: facts open opportunities for code improvement

• Next time: SSA (single static assignment) form – transform program to a new form where each variable has only a single definition.

 – Can make many optimizations/analyses more efficient