CSE 401 — Compilers

Lecture 22: Optimization/Dataflow
Analysis

Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg) 1

’ Reminders

* Project Part 4 due on Friday, March 15.

* There will be a short project report due on Sunday,
March 17 — at most one late day may be used for the
report (if you have any left).

— One-two pages
— Describe what you did, what works and doesn’t work, how

you tested, what you would have done the same/different,
etc...

— More details on the assighment page (out soon).

— Technical writing is an important skill for engineers — don’t
blow this off. “Concise but precise, and clear enough that
even a manager can understand it ...”

* Laure out of town — no office hours today.

Winter 2013 UW CSE 401 (Michael Ringenburg) 2

9 Today’s Agenda

* Finish our optimization overview from Friday.

* Begin discussing Dataflow Analysis, with
specific examples of how it is used (e.g.,
Common Subexpression Elimination a.k.a.
CSE).

— (No, this is not the UW Department of Common
Subexpression Elimination...)

w

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Review: Intraprocedural Constant
Propagation & Folding
* Create tables mapping each variable in scope to one of:
— A particular constant

— NonConstant
— Undefined

* Propagate current table along control flow edges in the CFG

* Transformation at each instruction in a basic block
(straightline code):

— If instruction is an assignment of a constant to a variable, set variable
as constant in table

— If we reference a variable that the table maps to a constant, then
replace it with the constant (constant propagation)

— If an expression involves only constants, and has no side-effects, then
perform operation at compile-time and replace with constant result
(constant folding)

Winter 2013 UW CSE 401 (Michael Ringenburg) 4

Merging data flow
analysis info

* To propagate between blocks, we must account for
merges (multiple incoming control flow edges).
* Constraint: merge results must be sound/conservative

— If something is believed true after the merge, then it must be
true no matter which path we took into the merge

— lLe., only things true for all predecessors are true after merge

* To merge two maps of constant information, build map by
merging corresponding variable information (merge x’s,
merge y’s, etc.)

* To merge information about a variable from two paths:

— If Undefined in one path, keep the status from the other
(uninitialized variables are allowed to have any value)

— If both paths have the same constant, keep that constant
— Otherwise, degenerate to NonConstant

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

Example Merges

// Block A
int x;
A {x:5} X = 5;

/\ if (foo) {
// Block B
B {x:S}\/C {x:5}

z++;
else {
// Block C
D {x:5} Z——3
}
// Block D

-

Winter 2013 UW CSE 401 (Michael Ringenburg) 6

Example Merges

// Block A
int x;
A {x:Undefined} if (foo) {

// Block B
Z2++;
B {x:S}\/C {x:5}

x = 5;
else {
// Block C
D {x:5} Z2-=3
x = 5;
}
// Block D

-~

Winter 2013 UW CSE 401 (Michael Ringenburg) 7

Example Merges

// Block A
int x;
A {x:Undefined} if (foo) {

// Block B
z++;
B {X:S}\/C (x:4}

x = 5;
else {
// Block C
D {x:NonConstant} Z——7
X = 4;
}
// Block D

-

Winter 2013 UW CSE 401 (Michael Ringenburg) 8

Example Merges

// Block A
int x;
A {x:Undefined} iF (foo) {
// Block B
B Z2++;
C {x:4}
{x:Undefined] poEleE g
// Block C
Z—=;
D {x:4} X = 4;
}
// Block D
Winter 2013 UW CSE 401 (Michael Ringenburg) 9

’ How to analyze loops

i=o0; * What do we do about
x = 10; backwards edges (aka,
y = 20;

loops)?

while (...) {
// what’s true here? « Safe but imprecise:

forget everything when

i=1+1 we enter or exit a loop
= 30; .
) * Precise but unsafe:
// what's true here? keep everything when
X ...i Ly .. we enter or exit a loop

e Can we do better?

Winter 2013 UW CSE 401 (Michael Ringenburg) 10

Loop Terminology

preheader

entry edge

Winter 2013 UW CSE 401 (Michael Ringenburg) 11

’ Optimistic Iterative
Analysis

* Assuming information at loop head is same as
information at loop entry

* Then analyze loop body (using this head assumption),
and compute information known at back edge

* Merge information at loop back edge with current loop
head information

* Test if merged information is same as original
assumption
— If so, then we’re done

— If not, then replace previous assumption with merged
information,

— and repeat analysis of loop body

Winter 2013 UW CSE 401 (Michael Ringenburg) 12

Example

i=20;
x = 10;
y = 20;

while (...) {
// what’s true here?

i=1i+1;
y = 30; }

// what’s true here?
X ... 1 ...y

Winter 2013 UW CSE 401 (Michael Ringenburg) 13
Example

i=20;

x = 10;

y = 20;

while (...) {
// what’s true here?

i=3i+1;
y = 30; }

// what’s true here?
X ... 1 ...y

Winter 2013

i=0,x=10,y=20

UW CSE 401 (Michael Ringenburg) 14

Example

i=20;

x = 10;

y = 20;

while (...) { i=0,x=10,y=20
// what’s true here?
i=1i+1;
y = 30; } i=1,x=10,y =30

// what’s true here?
X ... 1 ...y

Winter 2013 UW CSE 401 (Michael Ringenburg) 15

Example
i=0;
x = 10;
y = 20;
while (...) { i=0,x=10,y=20

// what’s true here?

i=3i+1;

y = 30; } i=1,x=10,y = 30
// what’s true here?

X ... 1 ...y

Winter 2013 UW CSE 401 (Michael Ringenburg) 16

Example

i=20;
x = 10;
y = 20;
while (...) { i=NC, x=10,y =NC

// what’s true here?

i=1+1;

y = 30; }
// what’s true here?
X ... 1 ...y
Winter 2013 UW CSE 401 (Michael Ringenburg) 17
Example
i=20;
x = 10;
y = 20;
while (...) { i=NC x=10,y = NC

// what’s true here?

i=3i+1;

y = 30; } i=NC,x=10,y =30
// what’s true here?

X ... 1 ...y

Winter 2013 UW CSE 401 (Michael Ringenburg) 18

Example

i=20;

x = 10;

y = 20;

while (...) { i =NC, x =10,y = NC
// what’s true here?
i=1i+1;
y = 30; } i=NC, x =10,y =30

// what’s true here?
X ... 1 ...y

Winter 2013 UW CSE 401 (Michael Ringenburg) 19

Example
i=0;
x = 10;
y = 20;
while (...) { i=NC, x=10,y=NC

// what’s true here?

i=1i+1;
y = 30; }

// what’s true here?
X ... 1 ...y ... i =NC x=10,y=NC

Winter 2013 UW CSE 401 (Michael Ringenburg) 20

9 Why does this work?

* Why are the results always conservative?

* Because if the algorithm stops, then

— the loop head info is at least as conservative as
both the loop entry info and the loop back edge
info

— the analysis within the loop body is conservative,

given the assumption that the loop head info is
conservative

Winter 2013 UW CSE 401 (Michael Ringenburg) 21

’ More analyses

* Alias analysis
— Detect when different references may or must refer to the
same memory locations
* Escape analysis
— Pointers that are live on exit from procedures
— Pointed to data may “escape” to other procedures or
threads
* Dependence analysis
— Determining which references depend on other references

— May analyze array subscripts that depend on loop
induction variables, to determine which loop iterations
depend on each other.

* Important for loop parallelization/vectorization

Winter 2013 UW CSE 401 (Michael Ringenburg) 22

’ Optimization Summary

* Optimizations organized as collections of
passes, each rewriting IL in place into
(hopefully) better version

* Each pass does analysis to determine what is
possible, followed by (or concurrent with)
transformations that (hopefully) improve the
program

— Sometimes have “analysis-only” passes — produce
info used by later passes

Winter 2013 UW CSE 401 (Michael Ringenburg) 23

’ Next topic:
Dataflow Analysis
* Aframework and algorithm for many common
compiler analyses

* Initial example: dataflow analysis for common
subexpression elimination

* Other analysis problems that work in the same
framework

* WEe'll be discussing some of the same
optimizations we saw in the optimization
overview, but with more formalism and details.

Winter 2013 UW CSE 401 (Michael Ringenburg) 24

otivating Example: Common
Subexpression Elimination (cse):

* Goal: Find common Alm=a+b
subexpressions, replace n=ath
with temporaries B = C ~
p=c+d g=a+b
* Idea: calculate available r=c+d ;=C+d
expressrons' at beginning o) B)
of each basic block s=a+b t=c+d
. . u=e+f u=e+f
* Avoid re-evaluation of an 3 —~
available expression — Flv=a+b
copy a temp instead wocrd
— Simple inside a single block; Gro—_
’ y=a+b
more complex dataflow z=c+d —
analysis used across bocks
Winter 2013 UW CSE 401 (Michael Ringenburg) 25

“Available” and
Other Terms

* An expression e is defined at EGLIN.
pom'f]f in the CFG (control flow defined "~

4

graph) if its value is computed at tl=a+b
p
— Sometimes called definition site l

* An expression e is killed at atb Jio=a+b
oint p if one of its operands ~ available "~
components) is redefined at p
— Sometimes called kill site

* An expression e is available at b -7 b=7
point p if every path leading to p if:rl’ed -
contains a prior definition of e
and e is not killed between that
definition and p

Winter 2013 UW CSE 401 (Michael Ringenburg) 26

9 Available Expression Sets

* To compute available expressions, for each
block b, define

— AVAIL(b) — the set of expressions available on
entrytob

— NKILL(b) — the set of expressions not killed in b

— DEF(b) — the set of expressions defined in b and
not subsequently killed in b

Winter 2013 UW CSE 401 (Michael Ringenburg) 27

’ Computing Available
Expressions

* AVAIL(b) is the set

AVAIL(b) = Nycpreqs(ey (DEF(X) U (AVAIL(x) N NKILL(x)))

— preds(b) is the set of b’s predecessors in the CFG

— In “english”, the expressions available on entry to b are the
expressions that were available at the end of every
preceeding basic block x. (This is the M,/ eqs(0))

— The expressions available at the end of block x are exactly
those that were defined in x (and not killed), and those that
were available at the beginning of x and not killed in x.

* Applying to every block gives a system of simultaneous
equations — a dataflow problem

Winter 2013 UW CSE 401 (Michael Ringenburg) 28

9 Computing Available
Expressions

* Big Picture
— Build control-flow graph

— Calculate initial local data — DEF(b) and NKILL(b)
* This only needs to be done once

— Iteratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes
* Another fixed-point algorithm

Winter 2013 UW CSE 401 (Michael Ringenburg) 29

’ Computing DEF and
NKILL (1)

* For each block b with operations 0,, 0,, ..., 0,

KILLED =& // Killed variables (not expressions)
DEF(b) =
fori=kto1 //Note we are working backwards - important
assume o, is “x=y +2z”
if (y & KILLED and z & KILLED) // Expression in DEF only if
add “y + z” to DEF(b) // they aren’t later killed
add x to KILLED

Winter 2013 UW CSE 401 (Michael Ringenburg) 30

Example: Computing DEF

and KILL
X=a+b; DEF = { }
b=c+d; KILL = { }
m = 5*n;

Winter 2013

UW CSE 401 (Michael Ringenburg)

Example: Computing DEF

and KILL
x=a+b; DEF = { 5*n }
b=c+d; KILL = { m }
m=5*n; l—

Winter 2013

UW CSE 401 (Michael Ringenburg)

32

Example: Computing DEF

and KILL
X=a+b; DEF = { 5*n, c+d }
b=c+d; KILL={m, b}
m = 5*n;

Winter 2013

UW CSE 401 (Michael Ringenburg)

Example: Computing DEF
and KILL

X=a+b;

b=c+d; KILL={m, b, x }
m = 5*n;

DEF = { 5*n, c+d }

Winter 2013

(b is killed, so don’t
add a+b to DEF)

UW CSE 401 (Michael Ringenburg)

34

9 Computing DEF and
NKILL (2)

* After computing DEF and KILLED for a block b,

// NKILL is expressions not killed.
NKILL(b) = { all expressions } // Start with all
for each expression e // Remove any killed
for each variablevEe
if v &€ KILLED then
NKILL(b) = NKILL(b) - e

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

Example: Computing DEF

and NKILL
X=a+b; DEF = { 5*n, c+d }
b=c+d; KILL={m, b, x }
m = 5*n; NKILL = all expressions

that dont use m, b, or x

Winter 2013 UW CSE 401 (Michael Ringenburg) 36

9 Computing Available
Expressions

* Once DEF(b) and NKILL(b) are computed for all
blocks b, compute AVAIL for all blocks by
repeatedly a\oplying the previous formula in a
fixed-point algorithm:

Worklist = { all blocks b, }
while (Worklist = &)
remove a block b from Worklist
// If b in Worklist, at least 1 predecessor changed
let AVAIL(b) = Mycpregs(ey (DEF(X) U (AVAIL(x) N NKILL(x)))
if AVAIL(b) changed
Worklist = Worklist U successors(b)

Winter 2013 UW CSE 401 (Michael Ringenburg) 37

Example: Computing DEF
and NKILL

AVAIL(D) = Nyepregsioy (DEF(X) U (AVAIL(x) N NKILL(x)))

j= 2*a DEF = { 2*a, 2*b }
k = 2*b NKILL = exprs w/o jor k

= .

NKILL = exprs w/om, | b = ¢ 4+ (- NKILL = exprs w/o ¢
I
b, or x m = 5%n;
i : DEF = { 2*a }
— — X
] = in orkist h = 2%a | \KILL = exprs w/o h

D = Processing

Winter 2013 UW CSE 401 (Michael Ringenburg) 38

Example: Computing DEF
and NKILL

AVAIL(D) = Nyepregsioy (DEF(X) U (AVAIL(x) N NKILL(x)))

j= 2*a AVAIL = { }
k — Z*b DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

—

DEF = { 5*n, c+d } X=a+b; c = 5%n DEF=55*n}
NKILL = exprsw/om, | p = ¢ + g NKILL = exprs w/o c
b, or x . !
m = 5*n;
. . _ DEF = { 2*a }
= =)%
| = inworkist h = 2%a | \KILL = exprs w/o h

D = Processing

Winter 2013 UW CSE 401 (Michael Ringenburg) 39

Example: Computing DEF
and NKILL

AVAIL(D) = Nyepregsioy (DEF(X) U (AVAIL(x) N NKILL(x)))

j=2%a |AVAIL={}
k = z*b DEF = { 2*a, 2*b }

/\NKILL = exprs w/o jork

DEF = { 5*n, c+d } X=a+b; c = 5%n DEF=£5*I']}
NKILL = exprs w/om, | b = ¢ 4+ (- NKILL = exprs w/o ¢
b, or x ’

m = 5*n;

)) AVAIL = { 5*n }
— = *
D = in Worklist h 2*a DEF = { 2*a }

[] = Processing NKILL = exprs w/o h

Winter 2013 UW CSE 401 (Michael Ringenburg) 40

Example: Computing DEF
and NKILL

AVAIL(D) = Nyepregsioy (DEF(X) U (AVAIL(x) N NKILL(x)))

j= 2%a |AVALL={}
k = z*b DEF = { 2*6, 2*b }

/\M(fLL = exprs w/o jor k

AVAIL = {2*a, 2*b}

_ : DEF = { 5*n }
XxX=a+b c =5*n
DEF = { 5*n, c+d } b=c4+ d: NKILL = exprs w/o c
NKILL = exprsw/om, | 5 !
b, or x m = n\k
. . _ AVAIL = { 5*n }
= — %
D = in Worklist h = 2*a DEF = { 2*a }
D = Processing NKILL = exprs w/o h

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: Computing DEF
and NKILL

AVAIL(D) = Nyepregsioy (DEF(X) U (AVAIL(x) N NKILL(x)))

j=2%a |AVAIL={}
k = z*b DEF = { 2*a, 2*b }

/\NKILL = exprs w/o jork

AVAILL = {2%3, 2D} | x = a + b; c = 5%n g\éﬁ;IE? éi:a} 2*b}
DEF={5I"I,C+C|} b=C+d; NKILL = /
NKILL = exprs w/o m, _ 5% = exprs w/o ¢
b, or x m = n\k
= *
[= in Worklist h = 2%g | AVAIL = { 5*n }

DEF = { 2*a }
[] = Processing NKILL = exprs w/o h

Winter 2013 UW CSE 401 (Michael Ringenburg) 42

AVAIL = {2*a, 2*b}
DEF = { 5*n, c+d }
NKILL = exprs w/o m,
b, or x

D = in Worklist
D = Processing

Winter 2013

Example: Computing DEF
and NKILL

AVAIL(D) = Nyepregsioy (DEF(X) U (AVAIL(x) N NKILL(x)))

j= 2*a AVAIL ={}
k = z*b DEF = { 2*6, 2*b }
/\M(fLL = exprs w/o jork
_ . _ £xn | AVAIL = {2%*a, 2*b}
E;zig' C=5™N| ber = {5%n 3
m = 5%n. / NKILL = exprs w/o c
I

N

h = 2*a

AVAIL = { 5%n, 2*a }

UW CSE 401 (Michael

DEF = { 2*a }
NKILL = exprs w/o h

Ringenburg)

Example: Computing DEF
and NKILL

AVAIL(D) = Nyepregsioy (DEF(X) U (AVAIL(x) N NKILL(x)))

j= 2*¥a |AVALL={}
k = 2*b DEF = { 2*a, 2*b }
/\NKILL = exprs w/o jork
AVALL = {2*a, 2*b} |x = a3 + b; ¢ = 5xn | AVAIL = {2%a, 2%b}
DEF = {5*n,c+d} |p=c +d: DEF = { 5*n }
NKILL = exprsw/om, | -y .’ NKILL = exprs w/o ¢
b, or x m = 5*n;

[| = in workiist
D = Processing

Winter 2013

N

h = 2*a

AVAIL = { 5%n, 2*a }

UW CSE 401 (Michael Rin

DEF = { 2*¥a }
NKILL = exprs w/o h

genburg) 44

9 Dataflow analysis

 Available expressions are an example of a
dataflow analysis problem

* Many other compiler analyses can be
expressed in a similar framework

* Only the first part of the story — once we’ve
discovered facts, we then need to use them to
improve code

Winter 2013 UW CSE 401 (Michael Ringenburg) 45

Characterizing Dataflow
Analysis

* All of these algorithms involve sets of facts about
each basic block b

— IN(b) — facts true on entry to b
— OUT(b) — facts true on exit from b
— GEN(b) — facts created and not killed in b
— KILL(b) — facts killed in b
* These are related by the equation
OUT(b) = GEN(b) U (IN(b) — KILL(b))
— (Subtracting KILL(b) is equivalent to intersecting NKILL(b))
— Solve this iteratively for all blocks

— Sometimes information propagates forward; sometimes
backward

Winter 2013 UW CSE 401 (Michael Ringenburg) 46

9 Example: Live Variable
Analysis

* Avariable v is live at point p if and only if there is
any path from p to a use of v along which v is not
redefined (i.e., v might be used before it is redefined)

* Some uses:

— Register allocation — only live variables need a register

— Eliminating useless stores — if variable is not live at store,
the stored value will never be used

— Detecting uses of uninitialized variables — if live at
declaration (before initialization), may be used
uninitialized.

— Improve SSA construction — only create phi functions
(variable merges) for live variables - coming later ...

Winter 2013 UW CSE 401 (Michael Ringenburg) 47

’ Liveness Analysis Sets

* For each block b, define
— use[b] = variable used in b before any def
— def[b] = variable defined in b before any use
—in[b] = variables live on entry to b
— out[b] = variables live on exit from b

Winter 2013 UW CSE 401 (Michael Ringenburg)

48

9 Equations for Live
Variables
* Given the preceding definitions, we have

in[b] = use[b] U (out[b] — def[b])
OUt[b] = Usesucc[b] in[s]

* Algorithm
—Setin[b] = out[b] =
— Update in, out until no change

Winter 2013 UW CSE 401 (Michael Ringenburg) 49

’ Example

* Code
a:=0
L: b:=a+l
c:=ct+b
a:=b*2
ifa<NgotolL
return c

6: return c

Winter 2013 UW CSE 401 (Michael Ringenburg) 50

Calculation

6: return c

in[b] = use[b] U (out[b] — def[b])
OUt[b] = UsEsucc[b] in[s]

’ Equations for Live
Variables v2
* Many problems have more than one
formulation. For example, Live Variables...
* Sets
— USED(b) — variables used in b before being defined
inb
— NOTDEF(b) — variables not defined in b
— LIVE(b) — variables live on exit from b
* Equation
LIVE(b) = Uquecqp) USED(s) U
(LIVE(s) N NOTDEF(s))

Winter 2013 UW CSE 401 (Michael Ringenburg) 52

9 Example: Reaching
Definitions

* A definition d of some variable v reaches

operation i iff i reads the value of v and

there is a path from d to i that does not
define v (i.e., i might use value defined at d)

* Uses

— Find all of the possible definition points for a
variable in an expression

Winter 2013 UW CSE 401 (Michael Ringenburg) 53

’ Equations for Reaching
Definitions

* Sets

— DEFOUT(b) — set of definitions in b that reach the end of b
(i.e., not subsequently redefined in b)

— SURVIVED(b) — set of all definitions not obscured by a
definitionin b
— REACHES(b) — set of definitions that reach b
* Equation
REACHES(b) = U a5 DEFOUT(p) U
(REACHES(p) N SURVIVED(p))

Winter 2013 UW CSE 401 (Michael Ringenburg) 54

9 Example: Very Busy
Expressions

* An expression e is considered very busy at
some point p if e is evaluated and used along
every path that leaves p, and evaluatinge atp
would produce the same result as evaluating
it at the original locations

* Uses

— Code hoisting — move e to p (reduces code size; no
effect on execution time)

Winter 2013 UW CSE 401 (Michael Ringenburg) 55

’ Equations for Very Busy
Expressions

* Sets
— USED(b) — expressions used in b before they are killed

— KILLED(b) — expressions redefined in b before they are
used

— VERYBUSY(b) — expressions very busy on exit from b
* Equation
VERYBUSY(b) = N,y cq(o) USED(s) U
(VERYBUSY(s) - KILLED(s))

Winter 2013 UW CSE 401 (Michael Ringenburg) 56

9 Using Dataflow
Information

* A few examples of possible transformations...

Winter 2013 UW CSE 401 (Michael Ringenburg) 57

’ Classic Common-
Subexpression Elimination

* Inastatements:t:=xopy,ifxopyis
available at s then it need not be recomputed

* Analysis: compute reaching expressions i.e.,
statements n: v := x op y such that the path
from n to s does not compute x op y or define
Xory

— As we saw in earlier example, available
expressions may be available from different places
in different paths (e.g., 5*n earlier).

Winter 2013 UW CSE 401 (Michael Ringenburg) 58

9 Classic CSE

* If xopyis defined at n and reaches s
— Create new temporary w
— Rewrite n as
n:w:=xopy
n:v:i=w
— If multiple reaching definition points, rewrite all of
them
— Modify statement s to be
s:ti=w
— (Rely on copy propagation to remove extra
assignments if not really needed)

Winter 2013 UW CSE 401 (Michael Ringenburg) 59

’ Constant Propagation

* Suppose we have
— Statement d: t := ¢, where c is constant

— Statement n that uses t
* If d reaches n and no other definitions of t
reach n, then rewrite n to use c instead of t

— Or (less common), if all reaching definitions set t
to same constant c.

Winter 2013 UW CSE 401 (Michael Ringenburg) 60

9 Copy Propagation

* Similar to constant propagation

* Setup:
— Statementd:t:=z
— Statement n uses t

* If d reaches n and no other definition of t reaches
n, and there is no definition of z on any path from
d to n, then rewrite n to use z instead of t

— We saw earlier how this can help remove dead
assignments

Winter 2013 UW CSE 401 (Michael Ringenburg) 61

’ Copy Propagation
Tradeoffs
* Downside is that this can increase the lifetime

of variable z and increase need for registers or
memory traffic

e But it can expose other optimizations, e.g.,
ai=y+z
u:=y
c:=u+z // Copy propagation makes thisy + z
— After copy propagation we can recognize the
common subexpression

Winter 2013 UW CSE 401 (Michael Ringenburg) 62

9 Dead Code Elimination

* If we have an instruction
sta:=bopc
and a is not live-out after s, then s can be
eliminated

— Provided it has no implicit side effects that are
visible (output, exceptions, etc.)

— E.g., if b or c are a function call, they may have
unknown side effects.

Winter 2013 UW CSE 401 (Michael Ringenburg) 63

’ Dataflow...

* General framework for discovering facts about
programs

— Although not the only possible story
* And then: facts open opportunities for code
improvement

* Next time: SSA (single static assignment) form —
transform program to a new form where each
variable has only a single definition.

— Can make many optimizations/analyses more efficient

Winter 2013 UW CSE 401 (Michael Ringenburg) 64

